维生素B2和黄素腺嘌呤二核苷酸在可见光下催化达卡巴嗪的光降解。

IF 3.5 3区 医学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Pharmaceutical Research Pub Date : 2024-12-01 Epub Date: 2024-12-18 DOI:10.1007/s11095-024-03802-2
Yuka Kimura, Mayuko Suga, Kayo Nakamura, Hidetsugu Tabata, Tetsuta Oshitari, Hideaki Natsugari, Hideyo Takahashi
{"title":"维生素B2和黄素腺嘌呤二核苷酸在可见光下催化达卡巴嗪的光降解。","authors":"Yuka Kimura, Mayuko Suga, Kayo Nakamura, Hidetsugu Tabata, Tetsuta Oshitari, Hideaki Natsugari, Hideyo Takahashi","doi":"10.1007/s11095-024-03802-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Drug photodegradation is a matter of great concern because it can result in potency loss and adverse side effects. This study examines the light-induced degradation of dacarbazine catalyzed by vitamin B<sub>2</sub> and flavin adenine dinucleotide (FAD) under light-emitting diode (LED) or fluorescent light irradiation.</p><p><strong>Methods: </strong>Dacarbazine was irradiated with LED (405 nm) or fluorescent light in the presence of various equivalents of vitamin B<sub>2</sub> or FAD. The photodegradation of the drug in D<sub>2</sub>O was monitored by <sup>1</sup>H nuclear magnetic resonance spectroscopy.</p><p><strong>Results: </strong>Dacarbazine dissolved in D<sub>2</sub>O decomposed in the presence of vitamin B<sub>2</sub> or FAD under irradiation with LED or fluorescent light. The decomposition products were 2-azahypoxanthine 2, which has previously been observed after light irradiation in the absence of vitamin B<sub>2</sub>, and 1H-imidazole-5-carboxamide 6, a new product formed in the presence of vitamin B<sub>2</sub>. Irradiation with LED light was more effective than irradiation with fluorescent light in degrading dacarbazine.</p><p><strong>Conclusion: </strong>Vitamin B<sub>2</sub> and FAD induced dacarbazine photodegradation. Thus, the interfusion of vitamin B<sub>2</sub> or FAD under excessive light exposure should be avoided during the intravenous administration of dacarbazine.</p>","PeriodicalId":20027,"journal":{"name":"Pharmaceutical Research","volume":" ","pages":"2363-2375"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11682012/pdf/","citationCount":"0","resultStr":"{\"title\":\"Photodegradation of Dacarbazine Catalyzed by Vitamin B<sub>2</sub> and Flavin Adenine Dinucleotide Under Visible-Light Irradiation.\",\"authors\":\"Yuka Kimura, Mayuko Suga, Kayo Nakamura, Hidetsugu Tabata, Tetsuta Oshitari, Hideaki Natsugari, Hideyo Takahashi\",\"doi\":\"10.1007/s11095-024-03802-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Drug photodegradation is a matter of great concern because it can result in potency loss and adverse side effects. This study examines the light-induced degradation of dacarbazine catalyzed by vitamin B<sub>2</sub> and flavin adenine dinucleotide (FAD) under light-emitting diode (LED) or fluorescent light irradiation.</p><p><strong>Methods: </strong>Dacarbazine was irradiated with LED (405 nm) or fluorescent light in the presence of various equivalents of vitamin B<sub>2</sub> or FAD. The photodegradation of the drug in D<sub>2</sub>O was monitored by <sup>1</sup>H nuclear magnetic resonance spectroscopy.</p><p><strong>Results: </strong>Dacarbazine dissolved in D<sub>2</sub>O decomposed in the presence of vitamin B<sub>2</sub> or FAD under irradiation with LED or fluorescent light. The decomposition products were 2-azahypoxanthine 2, which has previously been observed after light irradiation in the absence of vitamin B<sub>2</sub>, and 1H-imidazole-5-carboxamide 6, a new product formed in the presence of vitamin B<sub>2</sub>. Irradiation with LED light was more effective than irradiation with fluorescent light in degrading dacarbazine.</p><p><strong>Conclusion: </strong>Vitamin B<sub>2</sub> and FAD induced dacarbazine photodegradation. Thus, the interfusion of vitamin B<sub>2</sub> or FAD under excessive light exposure should be avoided during the intravenous administration of dacarbazine.</p>\",\"PeriodicalId\":20027,\"journal\":{\"name\":\"Pharmaceutical Research\",\"volume\":\" \",\"pages\":\"2363-2375\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11682012/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11095-024-03802-2\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11095-024-03802-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

目的:药物光降解是一个值得关注的问题,因为它可能导致效力损失和不良副作用。本文研究了维生素B2和黄素腺嘌呤二核苷酸(FAD)在发光二极管(LED)和荧光灯照射下对达卡巴嗪的光诱导降解。方法:用LED (405 nm)或荧光灯在不同当量的维生素B2或FAD存在下照射达卡巴嗪。1H核磁共振波谱法监测药物在D2O中的光降解。结果:在LED或荧光灯照射下,溶解于D2O中的达卡巴嗪在维生素B2或FAD存在下分解。分解产物是2-氮杂次黄嘌呤2,这是之前在没有维生素B2的情况下光照射后观察到的产物,以及在维生素B2存在下形成的新产物1h -咪唑-5-羧酰胺6。LED光照射对达卡巴嗪的降解效果优于荧光照射。结论:维生素B2和FAD可诱导达卡巴嗪的光降解。因此,在静脉注射达卡巴嗪时,应避免维生素B2或FAD在过度光照下的灌注。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Photodegradation of Dacarbazine Catalyzed by Vitamin B2 and Flavin Adenine Dinucleotide Under Visible-Light Irradiation.

Purpose: Drug photodegradation is a matter of great concern because it can result in potency loss and adverse side effects. This study examines the light-induced degradation of dacarbazine catalyzed by vitamin B2 and flavin adenine dinucleotide (FAD) under light-emitting diode (LED) or fluorescent light irradiation.

Methods: Dacarbazine was irradiated with LED (405 nm) or fluorescent light in the presence of various equivalents of vitamin B2 or FAD. The photodegradation of the drug in D2O was monitored by 1H nuclear magnetic resonance spectroscopy.

Results: Dacarbazine dissolved in D2O decomposed in the presence of vitamin B2 or FAD under irradiation with LED or fluorescent light. The decomposition products were 2-azahypoxanthine 2, which has previously been observed after light irradiation in the absence of vitamin B2, and 1H-imidazole-5-carboxamide 6, a new product formed in the presence of vitamin B2. Irradiation with LED light was more effective than irradiation with fluorescent light in degrading dacarbazine.

Conclusion: Vitamin B2 and FAD induced dacarbazine photodegradation. Thus, the interfusion of vitamin B2 or FAD under excessive light exposure should be avoided during the intravenous administration of dacarbazine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pharmaceutical Research
Pharmaceutical Research 医学-化学综合
CiteScore
6.60
自引率
5.40%
发文量
276
审稿时长
3.4 months
期刊介绍: Pharmaceutical Research, an official journal of the American Association of Pharmaceutical Scientists, is committed to publishing novel research that is mechanism-based, hypothesis-driven and addresses significant issues in drug discovery, development and regulation. Current areas of interest include, but are not limited to: -(pre)formulation engineering and processing- computational biopharmaceutics- drug delivery and targeting- molecular biopharmaceutics and drug disposition (including cellular and molecular pharmacology)- pharmacokinetics, pharmacodynamics and pharmacogenetics. Research may involve nonclinical and clinical studies, and utilize both in vitro and in vivo approaches. Studies on small drug molecules, pharmaceutical solid materials (including biomaterials, polymers and nanoparticles) biotechnology products (including genes, peptides, proteins and vaccines), and genetically engineered cells are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信