利用MaxEnt模型在沙特阿拉伯和阿拉伯联合酋长国的骆驼蜱种分布。

IF 2.1 3区 医学 Q2 PARASITOLOGY
Nighat Perveen, Sabir B Muzaffar, Areej Jaradat, Olivier A Sparagano, Arve L Willingham
{"title":"利用MaxEnt模型在沙特阿拉伯和阿拉伯联合酋长国的骆驼蜱种分布。","authors":"Nighat Perveen, Sabir B Muzaffar, Areej Jaradat, Olivier A Sparagano, Arve L Willingham","doi":"10.1017/S0031182024001161","DOIUrl":null,"url":null,"abstract":"<p><p>Ticks are important vectors and reservoirs of pathogens causing zoonotic diseases in camels and other livestock, rodents and other small mammals, birds and humans. <i>Hyalomma dromedarii</i> is the most abundant tick species in Saudi Arabia and United Arab Emirates (UAE) affecting primarily camels, and to a lesser extent, other livestock. Species presence data, land use/landcover, elevation, slope and 19 bioclimatic variables were used to model current and future distribution of <i>H. dromedarii</i> ticks using maximum entropy species distribution modelling (MaxEnt.). The model highlighted areas in the northern, eastern and southwestern parts of the study area as highly suitable for ticks. Several variables including land use/land cover (LULC) (53.1%), precipitation of coldest quarter (Bio19) (21.8%), elevation (20.6%), isothermality (Bio3) (1.9%), mean diurnal range [mean of monthly (max temp – min temp)] (Bio2) (1.8%), slope (0.5%), precipitation, seasonality (Bio15) (0.2%) influenced habitat suitability of ticks, predicting high tick density or abundance. Middle of the road scenario (ssp2-4.5) where CO<sub>2</sub> levels remain similar to current levels, did not indicate a major change in the tick distributions. This tick distribution model could be used for targeting surveillance efforts and increasing the efficiency and accuracy of public health investigations and vector control strategies.</p>","PeriodicalId":19967,"journal":{"name":"Parasitology","volume":" ","pages":"1024-1034"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11772089/pdf/","citationCount":"0","resultStr":"{\"title\":\"Camel tick species distribution in Saudi Arabia and United Arab Emirates using MaxEnt modelling.\",\"authors\":\"Nighat Perveen, Sabir B Muzaffar, Areej Jaradat, Olivier A Sparagano, Arve L Willingham\",\"doi\":\"10.1017/S0031182024001161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ticks are important vectors and reservoirs of pathogens causing zoonotic diseases in camels and other livestock, rodents and other small mammals, birds and humans. <i>Hyalomma dromedarii</i> is the most abundant tick species in Saudi Arabia and United Arab Emirates (UAE) affecting primarily camels, and to a lesser extent, other livestock. Species presence data, land use/landcover, elevation, slope and 19 bioclimatic variables were used to model current and future distribution of <i>H. dromedarii</i> ticks using maximum entropy species distribution modelling (MaxEnt.). The model highlighted areas in the northern, eastern and southwestern parts of the study area as highly suitable for ticks. Several variables including land use/land cover (LULC) (53.1%), precipitation of coldest quarter (Bio19) (21.8%), elevation (20.6%), isothermality (Bio3) (1.9%), mean diurnal range [mean of monthly (max temp – min temp)] (Bio2) (1.8%), slope (0.5%), precipitation, seasonality (Bio15) (0.2%) influenced habitat suitability of ticks, predicting high tick density or abundance. Middle of the road scenario (ssp2-4.5) where CO<sub>2</sub> levels remain similar to current levels, did not indicate a major change in the tick distributions. This tick distribution model could be used for targeting surveillance efforts and increasing the efficiency and accuracy of public health investigations and vector control strategies.</p>\",\"PeriodicalId\":19967,\"journal\":{\"name\":\"Parasitology\",\"volume\":\" \",\"pages\":\"1024-1034\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11772089/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Parasitology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1017/S0031182024001161\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PARASITOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parasitology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1017/S0031182024001161","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

蜱是骆驼和其他牲畜、啮齿动物和其他小型哺乳动物、鸟类和人类中引起人畜共患疾病的病原体的重要媒介和宿主。单峰透明瘤是沙特阿拉伯和阿拉伯联合酋长国(阿联酋)最常见的蜱类,主要影响骆驼,在较小程度上影响其他牲畜。利用最大熵物种分布模型(MaxEnt.),利用物种存在数据、土地利用/土地覆盖、高程、坡度和19个生物气候变量对单峰蜱的当前和未来分布进行了模拟。该模型强调了研究区域的北部、东部和西南部非常适合蜱虫的地区。土地利用/土地覆盖(LULC)(53.1%)、最冷季降水(Bio19)(21.8%)、海拔(20.6%)、等温线(Bio3)(1.9%)、平均日差[月平均(最高温度-最低温度)](Bio2)(1.8%)、坡度(0.5%)、降水、季节性(Bio15)(0.2%)等变量影响蜱的生境适宜性,预测蜱的高密度或丰度。在道路中间情景(ssp2-4.5)中,二氧化碳水平与当前水平保持相似,蜱虫分布没有发生重大变化。该蜱虫分布模型可用于有针对性的监测工作,提高公共卫生调查和媒介控制战略的效率和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Camel tick species distribution in Saudi Arabia and United Arab Emirates using MaxEnt modelling.

Ticks are important vectors and reservoirs of pathogens causing zoonotic diseases in camels and other livestock, rodents and other small mammals, birds and humans. Hyalomma dromedarii is the most abundant tick species in Saudi Arabia and United Arab Emirates (UAE) affecting primarily camels, and to a lesser extent, other livestock. Species presence data, land use/landcover, elevation, slope and 19 bioclimatic variables were used to model current and future distribution of H. dromedarii ticks using maximum entropy species distribution modelling (MaxEnt.). The model highlighted areas in the northern, eastern and southwestern parts of the study area as highly suitable for ticks. Several variables including land use/land cover (LULC) (53.1%), precipitation of coldest quarter (Bio19) (21.8%), elevation (20.6%), isothermality (Bio3) (1.9%), mean diurnal range [mean of monthly (max temp – min temp)] (Bio2) (1.8%), slope (0.5%), precipitation, seasonality (Bio15) (0.2%) influenced habitat suitability of ticks, predicting high tick density or abundance. Middle of the road scenario (ssp2-4.5) where CO2 levels remain similar to current levels, did not indicate a major change in the tick distributions. This tick distribution model could be used for targeting surveillance efforts and increasing the efficiency and accuracy of public health investigations and vector control strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Parasitology
Parasitology 医学-寄生虫学
CiteScore
4.80
自引率
4.20%
发文量
280
审稿时长
3-8 weeks
期刊介绍: Parasitology is an important specialist journal covering the latest advances in the subject. It publishes original research and review papers on all aspects of parasitology and host-parasite relationships, including the latest discoveries in parasite biochemistry, molecular biology and genetics, ecology and epidemiology in the context of the biological, medical and veterinary sciences. Included in the subscription price are two special issues which contain reviews of current hot topics, one of which is the proceedings of the annual Symposia of the British Society for Parasitology, while the second, covering areas of significant topical interest, is commissioned by the editors and the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信