{"title":"代谢合金簇组装纳米抑制剂,通过缺氧缓解和细胞内PD-L1抑制来增强肿瘤放疗。","authors":"Guanwen Ding, Shengnan Liu, Xiangshan Yang, Hongying Lv, Mengchao Jia, Juan Li, Rui Zhang","doi":"10.1186/s12951-024-03057-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cancer radiotherapy (RT) still has limited clinical success because of the obstacles including radioresistance of hypoxic tumors, high-dose X-ray-induced damage to adjacent healthy tissue, and DNA-damage repair by intracellular PD-L1 in tumor.</p><p><strong>Results: </strong>Therefore, to overcome these obstacles multifunctional core-shell BMS@Pt<sub>2</sub>Au<sub>4</sub> nanoparticles (NPs) are prepared using nanoprecipitation followed by electrostatic assembly. Pt<sub>2</sub>Au<sub>4</sub> clusters are released from BMS@Pt<sub>2</sub>Au<sub>4</sub> NPs to alleviate tumor hypoxia by catalyzing the decomposition of endogenous H<sub>2</sub>O<sub>2</sub> to generate O<sub>2</sub> as well as by enhancing X-ray deposition at the tumor site, which thereby reduce the required X-ray dose. The released BMS-202 molecules simultaneously blockade PD-L1 on and in tumor cells, causing the activation of effector T cells and the inhibition of DNA-damage repair. Consequently, radiotherapy based on BMS@Pt<sub>2</sub>Au<sub>4</sub> NPs enhance the expression of calreticulin on cancer cells, transposition of HMGB1 from the nucleus to the cytoplasm, generation of reactive oxygen species (ROS), DNA breakage and apoptosis of cancer cells in vitro. The tumor inhibition rate reached 92.5% under three cycles of 1-Gy X-ray irradiation in vivo.</p><p><strong>Conclusion: </strong>In conclusion, the therapeutic outcome supports the high-efficiency of radiotherapy based on BMS@Pt<sub>2</sub>Au<sub>4</sub> NPs in hypoxic tumors expressing PD-L1.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"774"},"PeriodicalIF":10.6000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11657501/pdf/","citationCount":"0","resultStr":"{\"title\":\"Metabolizable alloy clusters assemble nanoinhibitor for enhanced radiotherapy of tumor by hypoxia alleviation and intracellular PD-L1 restraint.\",\"authors\":\"Guanwen Ding, Shengnan Liu, Xiangshan Yang, Hongying Lv, Mengchao Jia, Juan Li, Rui Zhang\",\"doi\":\"10.1186/s12951-024-03057-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Cancer radiotherapy (RT) still has limited clinical success because of the obstacles including radioresistance of hypoxic tumors, high-dose X-ray-induced damage to adjacent healthy tissue, and DNA-damage repair by intracellular PD-L1 in tumor.</p><p><strong>Results: </strong>Therefore, to overcome these obstacles multifunctional core-shell BMS@Pt<sub>2</sub>Au<sub>4</sub> nanoparticles (NPs) are prepared using nanoprecipitation followed by electrostatic assembly. Pt<sub>2</sub>Au<sub>4</sub> clusters are released from BMS@Pt<sub>2</sub>Au<sub>4</sub> NPs to alleviate tumor hypoxia by catalyzing the decomposition of endogenous H<sub>2</sub>O<sub>2</sub> to generate O<sub>2</sub> as well as by enhancing X-ray deposition at the tumor site, which thereby reduce the required X-ray dose. The released BMS-202 molecules simultaneously blockade PD-L1 on and in tumor cells, causing the activation of effector T cells and the inhibition of DNA-damage repair. Consequently, radiotherapy based on BMS@Pt<sub>2</sub>Au<sub>4</sub> NPs enhance the expression of calreticulin on cancer cells, transposition of HMGB1 from the nucleus to the cytoplasm, generation of reactive oxygen species (ROS), DNA breakage and apoptosis of cancer cells in vitro. The tumor inhibition rate reached 92.5% under three cycles of 1-Gy X-ray irradiation in vivo.</p><p><strong>Conclusion: </strong>In conclusion, the therapeutic outcome supports the high-efficiency of radiotherapy based on BMS@Pt<sub>2</sub>Au<sub>4</sub> NPs in hypoxic tumors expressing PD-L1.</p>\",\"PeriodicalId\":16383,\"journal\":{\"name\":\"Journal of Nanobiotechnology\",\"volume\":\"22 1\",\"pages\":\"774\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11657501/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanobiotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12951-024-03057-4\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-024-03057-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Metabolizable alloy clusters assemble nanoinhibitor for enhanced radiotherapy of tumor by hypoxia alleviation and intracellular PD-L1 restraint.
Background: Cancer radiotherapy (RT) still has limited clinical success because of the obstacles including radioresistance of hypoxic tumors, high-dose X-ray-induced damage to adjacent healthy tissue, and DNA-damage repair by intracellular PD-L1 in tumor.
Results: Therefore, to overcome these obstacles multifunctional core-shell BMS@Pt2Au4 nanoparticles (NPs) are prepared using nanoprecipitation followed by electrostatic assembly. Pt2Au4 clusters are released from BMS@Pt2Au4 NPs to alleviate tumor hypoxia by catalyzing the decomposition of endogenous H2O2 to generate O2 as well as by enhancing X-ray deposition at the tumor site, which thereby reduce the required X-ray dose. The released BMS-202 molecules simultaneously blockade PD-L1 on and in tumor cells, causing the activation of effector T cells and the inhibition of DNA-damage repair. Consequently, radiotherapy based on BMS@Pt2Au4 NPs enhance the expression of calreticulin on cancer cells, transposition of HMGB1 from the nucleus to the cytoplasm, generation of reactive oxygen species (ROS), DNA breakage and apoptosis of cancer cells in vitro. The tumor inhibition rate reached 92.5% under three cycles of 1-Gy X-ray irradiation in vivo.
Conclusion: In conclusion, the therapeutic outcome supports the high-efficiency of radiotherapy based on BMS@Pt2Au4 NPs in hypoxic tumors expressing PD-L1.
期刊介绍:
Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.