阿尔茨海默病转基因小鼠早期皮层血管损伤的证据:光学成像。

IF 4.9 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Hyomin Jeong, Yingtian Pan, Firoz Akhter, Nora D Volkow, Donghui Zhu, Congwu Du
{"title":"阿尔茨海默病转基因小鼠早期皮层血管损伤的证据:光学成像。","authors":"Hyomin Jeong, Yingtian Pan, Firoz Akhter, Nora D Volkow, Donghui Zhu, Congwu Du","doi":"10.1177/0271678X241304893","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD), a neurodegenerative disorder with progressive cognitive decline, remains clinically challenging with limited understanding of etiology and interventions. Clinical studies have reported vascular defects prior to other pathological manifestations of AD, leading to the \"Vascular Hypothesis\" for the disorder. However, <i>in vivo</i> assessments of cerebral vasculature in AD rodent models have been constrained by limited spatiotemporal resolution or field of view of conventional imaging. We herein employed two <i>in vivo</i> imaging technologies, Dual-Wavelength Imaging and Optical Coherence Doppler Tomography, to evaluate cerebrovascular reactivity (CVR) to vasoconstrictive cocaine and vasodilatory hypercapnia challenges and to detect resting 3D cerebral blood flow (CBF) in living transgenic AD mice at capillary resolution. Results showed that CVR to cocaine and hypercapnia was significantly attenuated in 7-10 months old AD mice vs controls, indicating reduced vascular flexibility and reactivity. Additionally, in the AD mice, arterial CBF velocities were slower and the microvascular density in cortex was decreased compared to controls. These results reveal significant vascular impairments including reduced CVR and resting CBF in early-staged AD mice. Hence, this cutting-edge <i>in vivo</i> optical imaging offers an innovative venue for detecting early neurovascular dysfunction in AD brain with translational potential.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"271678X241304893"},"PeriodicalIF":4.9000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evidence of cortical vascular impairments in early stage of Alzheimer's transgenic mice: Optical imaging.\",\"authors\":\"Hyomin Jeong, Yingtian Pan, Firoz Akhter, Nora D Volkow, Donghui Zhu, Congwu Du\",\"doi\":\"10.1177/0271678X241304893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alzheimer's disease (AD), a neurodegenerative disorder with progressive cognitive decline, remains clinically challenging with limited understanding of etiology and interventions. Clinical studies have reported vascular defects prior to other pathological manifestations of AD, leading to the \\\"Vascular Hypothesis\\\" for the disorder. However, <i>in vivo</i> assessments of cerebral vasculature in AD rodent models have been constrained by limited spatiotemporal resolution or field of view of conventional imaging. We herein employed two <i>in vivo</i> imaging technologies, Dual-Wavelength Imaging and Optical Coherence Doppler Tomography, to evaluate cerebrovascular reactivity (CVR) to vasoconstrictive cocaine and vasodilatory hypercapnia challenges and to detect resting 3D cerebral blood flow (CBF) in living transgenic AD mice at capillary resolution. Results showed that CVR to cocaine and hypercapnia was significantly attenuated in 7-10 months old AD mice vs controls, indicating reduced vascular flexibility and reactivity. Additionally, in the AD mice, arterial CBF velocities were slower and the microvascular density in cortex was decreased compared to controls. These results reveal significant vascular impairments including reduced CVR and resting CBF in early-staged AD mice. Hence, this cutting-edge <i>in vivo</i> optical imaging offers an innovative venue for detecting early neurovascular dysfunction in AD brain with translational potential.</p>\",\"PeriodicalId\":15325,\"journal\":{\"name\":\"Journal of Cerebral Blood Flow and Metabolism\",\"volume\":\" \",\"pages\":\"271678X241304893\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cerebral Blood Flow and Metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/0271678X241304893\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cerebral Blood Flow and Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/0271678X241304893","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

阿尔茨海默病(AD)是一种伴有进行性认知能力下降的神经退行性疾病,由于对病因和干预措施的了解有限,在临床上仍然具有挑战性。临床研究报道了血管缺陷先于AD的其他病理表现,导致了AD的“血管假说”。然而,阿尔茨海默病啮齿动物模型的体内脑血管系统评估受到有限的时空分辨率或常规成像视野的限制。本文采用两种体内成像技术,双波长成像和光学相干多普勒断层扫描,评估脑血管对血管收缩性可卡因和血管扩张性高碳酸血症的反应性(CVR),并在毛细管分辨率下检测转基因AD活小鼠静息三维脑血流量(CBF)。结果显示,与对照组相比,7-10月龄AD小鼠对可卡因和高碳酸血症的CVR明显减弱,表明血管柔韧性和反应性降低。此外,在AD小鼠中,与对照组相比,动脉CBF速度更慢,皮层微血管密度降低。这些结果揭示了早期AD小鼠明显的血管损伤,包括CVR和静息CBF的减少。因此,这种尖端的体内光学成像技术为检测阿尔茨海默病大脑早期神经血管功能障碍提供了一种具有翻译潜力的创新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evidence of cortical vascular impairments in early stage of Alzheimer's transgenic mice: Optical imaging.

Alzheimer's disease (AD), a neurodegenerative disorder with progressive cognitive decline, remains clinically challenging with limited understanding of etiology and interventions. Clinical studies have reported vascular defects prior to other pathological manifestations of AD, leading to the "Vascular Hypothesis" for the disorder. However, in vivo assessments of cerebral vasculature in AD rodent models have been constrained by limited spatiotemporal resolution or field of view of conventional imaging. We herein employed two in vivo imaging technologies, Dual-Wavelength Imaging and Optical Coherence Doppler Tomography, to evaluate cerebrovascular reactivity (CVR) to vasoconstrictive cocaine and vasodilatory hypercapnia challenges and to detect resting 3D cerebral blood flow (CBF) in living transgenic AD mice at capillary resolution. Results showed that CVR to cocaine and hypercapnia was significantly attenuated in 7-10 months old AD mice vs controls, indicating reduced vascular flexibility and reactivity. Additionally, in the AD mice, arterial CBF velocities were slower and the microvascular density in cortex was decreased compared to controls. These results reveal significant vascular impairments including reduced CVR and resting CBF in early-staged AD mice. Hence, this cutting-edge in vivo optical imaging offers an innovative venue for detecting early neurovascular dysfunction in AD brain with translational potential.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cerebral Blood Flow and Metabolism
Journal of Cerebral Blood Flow and Metabolism 医学-内分泌学与代谢
CiteScore
12.00
自引率
4.80%
发文量
300
审稿时长
3 months
期刊介绍: JCBFM is the official journal of the International Society for Cerebral Blood Flow & Metabolism, which is committed to publishing high quality, independently peer-reviewed research and review material. JCBFM stands at the interface between basic and clinical neurovascular research, and features timely and relevant research highlighting experimental, theoretical, and clinical aspects of brain circulation, metabolism and imaging. The journal is relevant to any physician or scientist with an interest in brain function, cerebrovascular disease, cerebral vascular regulation and brain metabolism, including neurologists, neurochemists, physiologists, pharmacologists, anesthesiologists, neuroradiologists, neurosurgeons, neuropathologists and neuroscientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信