{"title":"斑马鱼衰老和疾病的端粒动力学。","authors":"Miguel Godinho Ferreira","doi":"10.1101/cshperspect.a041696","DOIUrl":null,"url":null,"abstract":"<p><p>Fish telomere lengths vary significantly across the numerous species, implicating diverse life strategies and environmental adaptations. Zebrafish have telomere dynamics that are comparable to humans and are emerging as a key model in which to unravel the systemic effects of telomere shortening on aging and interorgan communication. Here, we discuss zebrafish telomere biology, focusing on the organismal impact of telomere attrition beyond cellular senescence, with particular emphasis on how telomeric shortening in specific tissues can unleash widespread organ dysfunction and disease. This highlights a novel aspect of tissue communication, whereby telomere shortening in one organ can propagate through biological networks, influencing the aging process systemically. These discoveries position zebrafish as a valuable model for studying the complex interactions between telomeres, aging, and tissue cross talk, providing important insights with direct relevance to human health and longevity.</p>","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Telomere Dynamics in Zebrafish Aging and Disease.\",\"authors\":\"Miguel Godinho Ferreira\",\"doi\":\"10.1101/cshperspect.a041696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fish telomere lengths vary significantly across the numerous species, implicating diverse life strategies and environmental adaptations. Zebrafish have telomere dynamics that are comparable to humans and are emerging as a key model in which to unravel the systemic effects of telomere shortening on aging and interorgan communication. Here, we discuss zebrafish telomere biology, focusing on the organismal impact of telomere attrition beyond cellular senescence, with particular emphasis on how telomeric shortening in specific tissues can unleash widespread organ dysfunction and disease. This highlights a novel aspect of tissue communication, whereby telomere shortening in one organ can propagate through biological networks, influencing the aging process systemically. These discoveries position zebrafish as a valuable model for studying the complex interactions between telomeres, aging, and tissue cross talk, providing important insights with direct relevance to human health and longevity.</p>\",\"PeriodicalId\":10494,\"journal\":{\"name\":\"Cold Spring Harbor perspectives in biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cold Spring Harbor perspectives in biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1101/cshperspect.a041696\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Spring Harbor perspectives in biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/cshperspect.a041696","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Fish telomere lengths vary significantly across the numerous species, implicating diverse life strategies and environmental adaptations. Zebrafish have telomere dynamics that are comparable to humans and are emerging as a key model in which to unravel the systemic effects of telomere shortening on aging and interorgan communication. Here, we discuss zebrafish telomere biology, focusing on the organismal impact of telomere attrition beyond cellular senescence, with particular emphasis on how telomeric shortening in specific tissues can unleash widespread organ dysfunction and disease. This highlights a novel aspect of tissue communication, whereby telomere shortening in one organ can propagate through biological networks, influencing the aging process systemically. These discoveries position zebrafish as a valuable model for studying the complex interactions between telomeres, aging, and tissue cross talk, providing important insights with direct relevance to human health and longevity.
期刊介绍:
Cold Spring Harbor Perspectives in Biology offers a comprehensive platform in the molecular life sciences, featuring reviews that span molecular, cell, and developmental biology, genetics, neuroscience, immunology, cancer biology, and molecular pathology. This online publication provides in-depth insights into various topics, making it a valuable resource for those engaged in diverse aspects of biological research.