使用子宫内膜类器官研究衰老相关的子宫内膜功能障碍。

IF 5.9 1区 生物学 Q2 CELL BIOLOGY
Minghui Lu, Yanli Han, Yu Zhang, Ruijie Yu, Yining Su, Xueyao Chen, Boyang Liu, Tao Li, Rusong Zhao, Han Zhao
{"title":"使用子宫内膜类器官研究衰老相关的子宫内膜功能障碍。","authors":"Minghui Lu, Yanli Han, Yu Zhang, Ruijie Yu, Yining Su, Xueyao Chen, Boyang Liu, Tao Li, Rusong Zhao, Han Zhao","doi":"10.1111/cpr.13780","DOIUrl":null,"url":null,"abstract":"<p><p>Ageing of the endometrium is a critical factor that affects reproductive health, yet its intricate mechanisms remain poorly explored. In this study, we performed transcriptome profiling and experimental verification of endometrium and endometrial organoids from young and advanced age females, to elucidate the underlying mechanisms and to explore novel treatment strategies for endometrial ageing. First, we found that age-associated decline in endometrial functions including fibrosis and diminished receptivity, already exists in reproductive age. Subsequently, based on RNA-seq analysis, we identified several changes in molecular processes affected by age, including fibrosis, imbalanced inflammatory status including Th1 bias in secretory phase, cellular senescence and abnormal signalling transduction in key pathways, with all processes been further validated by molecular experiments. Finally, we uncovered for the first time that PI3K-AKT-FOXO1 signalling pathway is overactivated in ageing endometrium and is closely correlated with fibrosis and impaired receptivity characteristics of ageing endometrium. Blocking or activation of PI3K by LY294002 or 740Y-P could attenuate the effect of ageing or accelerate dysfunction of endometrial organoids. This discovery is expected to bring new breakthroughs for understanding the pathophysiological processes associated with endometrial ageing, as well as treatment strategies to improve reproductive outcomes in women of advanced reproductive age.</p>","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":" ","pages":"e13780"},"PeriodicalIF":5.9000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating Aging-Related Endometrial Dysfunction Using Endometrial Organoids.\",\"authors\":\"Minghui Lu, Yanli Han, Yu Zhang, Ruijie Yu, Yining Su, Xueyao Chen, Boyang Liu, Tao Li, Rusong Zhao, Han Zhao\",\"doi\":\"10.1111/cpr.13780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ageing of the endometrium is a critical factor that affects reproductive health, yet its intricate mechanisms remain poorly explored. In this study, we performed transcriptome profiling and experimental verification of endometrium and endometrial organoids from young and advanced age females, to elucidate the underlying mechanisms and to explore novel treatment strategies for endometrial ageing. First, we found that age-associated decline in endometrial functions including fibrosis and diminished receptivity, already exists in reproductive age. Subsequently, based on RNA-seq analysis, we identified several changes in molecular processes affected by age, including fibrosis, imbalanced inflammatory status including Th1 bias in secretory phase, cellular senescence and abnormal signalling transduction in key pathways, with all processes been further validated by molecular experiments. Finally, we uncovered for the first time that PI3K-AKT-FOXO1 signalling pathway is overactivated in ageing endometrium and is closely correlated with fibrosis and impaired receptivity characteristics of ageing endometrium. Blocking or activation of PI3K by LY294002 or 740Y-P could attenuate the effect of ageing or accelerate dysfunction of endometrial organoids. This discovery is expected to bring new breakthroughs for understanding the pathophysiological processes associated with endometrial ageing, as well as treatment strategies to improve reproductive outcomes in women of advanced reproductive age.</p>\",\"PeriodicalId\":9760,\"journal\":{\"name\":\"Cell Proliferation\",\"volume\":\" \",\"pages\":\"e13780\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Proliferation\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/cpr.13780\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Proliferation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/cpr.13780","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

子宫内膜老化是影响生殖健康的关键因素,但其复杂的机制仍未得到充分探讨。在这项研究中,我们对年轻和高龄女性的子宫内膜和子宫内膜类器官进行了转录组分析和实验验证,以阐明其潜在机制并探索子宫内膜衰老的新治疗策略。首先,我们发现年龄相关的子宫内膜功能下降,包括纤维化和接受能力下降,已经存在于育龄期。随后,基于RNA-seq分析,我们确定了受年龄影响的几个分子过程的变化,包括纤维化、炎症状态失衡(包括分泌期Th1偏倚)、细胞衰老和关键通路的异常信号转导,并通过分子实验进一步验证了所有这些过程。最后,我们首次发现PI3K-AKT-FOXO1信号通路在老化子宫内膜中过度激活,并与老化子宫内膜纤维化和受受性受损特征密切相关。LY294002或740Y-P阻断或激活PI3K可以减轻衰老的影响或加速子宫内膜类器官的功能障碍。这一发现有望为了解子宫内膜老化的病理生理过程以及改善高龄妇女生殖结果的治疗策略带来新的突破。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigating Aging-Related Endometrial Dysfunction Using Endometrial Organoids.

Ageing of the endometrium is a critical factor that affects reproductive health, yet its intricate mechanisms remain poorly explored. In this study, we performed transcriptome profiling and experimental verification of endometrium and endometrial organoids from young and advanced age females, to elucidate the underlying mechanisms and to explore novel treatment strategies for endometrial ageing. First, we found that age-associated decline in endometrial functions including fibrosis and diminished receptivity, already exists in reproductive age. Subsequently, based on RNA-seq analysis, we identified several changes in molecular processes affected by age, including fibrosis, imbalanced inflammatory status including Th1 bias in secretory phase, cellular senescence and abnormal signalling transduction in key pathways, with all processes been further validated by molecular experiments. Finally, we uncovered for the first time that PI3K-AKT-FOXO1 signalling pathway is overactivated in ageing endometrium and is closely correlated with fibrosis and impaired receptivity characteristics of ageing endometrium. Blocking or activation of PI3K by LY294002 or 740Y-P could attenuate the effect of ageing or accelerate dysfunction of endometrial organoids. This discovery is expected to bring new breakthroughs for understanding the pathophysiological processes associated with endometrial ageing, as well as treatment strategies to improve reproductive outcomes in women of advanced reproductive age.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Proliferation
Cell Proliferation 生物-细胞生物学
CiteScore
14.80
自引率
2.40%
发文量
198
审稿时长
1 months
期刊介绍: Cell Proliferation Focus: Devoted to studies into all aspects of cell proliferation and differentiation. Covers normal and abnormal states. Explores control systems and mechanisms at various levels: inter- and intracellular, molecular, and genetic. Investigates modification by and interactions with chemical and physical agents. Includes mathematical modeling and the development of new techniques. Publication Content: Original research papers Invited review articles Book reviews Letters commenting on previously published papers and/or topics of general interest By organizing the information in this manner, readers can quickly grasp the scope, focus, and publication content of Cell Proliferation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信