利用统计和人工智能技术对糖尿病进行可解释的分析。

IF 3.3 3区 医学 Q2 MEDICAL INFORMATICS
William Hoyos, Kenia Hoyos, Rander Ruiz, Jose Aguilar
{"title":"利用统计和人工智能技术对糖尿病进行可解释的分析。","authors":"William Hoyos, Kenia Hoyos, Rander Ruiz, Jose Aguilar","doi":"10.1186/s12911-024-02810-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Diabetes mellitus (DM) is a chronic disease prevalent worldwide, requiring a multifaceted analytical approach to improve early detection and subsequent mitigation of morbidity and mortality rates. This research aimed to develop an explainable analysis of DM by combining sociodemographic and clinical data with statistical and artificial intelligence (AI) techniques.</p><p><strong>Methods: </strong>Leveraging a small dataset that includes sociodemographic and clinical profiles of diabetic and non-diabetic individuals, we employed a diverse set of statistical and AI models for predictive purposes and assessment of DM risk factors. The statistical tests used were Student's t-test and Chi-square, while the AI techniques were fuzzy cognitive maps (FCM), artificial neural networks (ANN), support vector machines (SVM), and XGBoost.</p><p><strong>Results: </strong>Our statistical models facilitated an in-depth exploration of variable associations, while the resulting AI models demonstrated exceptional efficacy in DM classification. In particular, the XGBoost model showed superior performance in accuracy, sensitivity and specificity with values of 1 for each of these metrics. On the other hand, the FCM stood out for its explainability capabilities by allowing an analysis of the variables involved in the prediction using scenario-based simulations.</p><p><strong>Conclusions: </strong>An integrated analysis of DM using a variety of methodologies is critical for timely detection of the disease and informed clinical decision-making.</p>","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":"24 1","pages":"383"},"PeriodicalIF":3.3000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11654128/pdf/","citationCount":"0","resultStr":"{\"title\":\"An explainable analysis of diabetes mellitus using statistical and artificial intelligence techniques.\",\"authors\":\"William Hoyos, Kenia Hoyos, Rander Ruiz, Jose Aguilar\",\"doi\":\"10.1186/s12911-024-02810-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Diabetes mellitus (DM) is a chronic disease prevalent worldwide, requiring a multifaceted analytical approach to improve early detection and subsequent mitigation of morbidity and mortality rates. This research aimed to develop an explainable analysis of DM by combining sociodemographic and clinical data with statistical and artificial intelligence (AI) techniques.</p><p><strong>Methods: </strong>Leveraging a small dataset that includes sociodemographic and clinical profiles of diabetic and non-diabetic individuals, we employed a diverse set of statistical and AI models for predictive purposes and assessment of DM risk factors. The statistical tests used were Student's t-test and Chi-square, while the AI techniques were fuzzy cognitive maps (FCM), artificial neural networks (ANN), support vector machines (SVM), and XGBoost.</p><p><strong>Results: </strong>Our statistical models facilitated an in-depth exploration of variable associations, while the resulting AI models demonstrated exceptional efficacy in DM classification. In particular, the XGBoost model showed superior performance in accuracy, sensitivity and specificity with values of 1 for each of these metrics. On the other hand, the FCM stood out for its explainability capabilities by allowing an analysis of the variables involved in the prediction using scenario-based simulations.</p><p><strong>Conclusions: </strong>An integrated analysis of DM using a variety of methodologies is critical for timely detection of the disease and informed clinical decision-making.</p>\",\"PeriodicalId\":9340,\"journal\":{\"name\":\"BMC Medical Informatics and Decision Making\",\"volume\":\"24 1\",\"pages\":\"383\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11654128/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Medical Informatics and Decision Making\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12911-024-02810-x\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICAL INFORMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Informatics and Decision Making","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12911-024-02810-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0

摘要

背景:糖尿病(DM)是一种世界范围内普遍存在的慢性疾病,需要多方面的分析方法来改善早期发现和随后降低发病率和死亡率。本研究旨在通过将社会人口学和临床数据与统计和人工智能(AI)技术相结合,对糖尿病进行可解释的分析。方法:利用一个小数据集,包括糖尿病和非糖尿病个体的社会人口学和临床资料,我们采用了一套不同的统计和人工智能模型来预测和评估糖尿病的危险因素。使用的统计检验是学生t检验和卡方检验,而人工智能技术是模糊认知图(FCM)、人工神经网络(ANN)、支持向量机(SVM)和XGBoost。结果:我们的统计模型促进了对变量关联的深入探索,而由此产生的人工智能模型在糖尿病分类中表现出卓越的功效。特别是,XGBoost模型在准确性、灵敏度和特异性方面表现出优异的性能,这些指标的每个值都为1。另一方面,FCM通过使用基于场景的模拟来分析预测中涉及的变量,从而使其可解释性能力脱颖而出。结论:使用多种方法对糖尿病进行综合分析对于及时发现疾病和知情的临床决策至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An explainable analysis of diabetes mellitus using statistical and artificial intelligence techniques.

Background: Diabetes mellitus (DM) is a chronic disease prevalent worldwide, requiring a multifaceted analytical approach to improve early detection and subsequent mitigation of morbidity and mortality rates. This research aimed to develop an explainable analysis of DM by combining sociodemographic and clinical data with statistical and artificial intelligence (AI) techniques.

Methods: Leveraging a small dataset that includes sociodemographic and clinical profiles of diabetic and non-diabetic individuals, we employed a diverse set of statistical and AI models for predictive purposes and assessment of DM risk factors. The statistical tests used were Student's t-test and Chi-square, while the AI techniques were fuzzy cognitive maps (FCM), artificial neural networks (ANN), support vector machines (SVM), and XGBoost.

Results: Our statistical models facilitated an in-depth exploration of variable associations, while the resulting AI models demonstrated exceptional efficacy in DM classification. In particular, the XGBoost model showed superior performance in accuracy, sensitivity and specificity with values of 1 for each of these metrics. On the other hand, the FCM stood out for its explainability capabilities by allowing an analysis of the variables involved in the prediction using scenario-based simulations.

Conclusions: An integrated analysis of DM using a variety of methodologies is critical for timely detection of the disease and informed clinical decision-making.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
5.70%
发文量
297
审稿时长
1 months
期刊介绍: BMC Medical Informatics and Decision Making is an open access journal publishing original peer-reviewed research articles in relation to the design, development, implementation, use, and evaluation of health information technologies and decision-making for human health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信