Xiaojiang Zhao, Yuhang Wang, Mengli Xue, Yun Ding, Han Zhang, Kai Wang, Jie Ren, Xin Li, Meilin Xu, Jun Lv, Zixiao Wang, Daqiang Sun
{"title":"使用CT放射组学评估I期肺腺癌的三级淋巴结构:一项多中心回顾性队列研究。","authors":"Xiaojiang Zhao, Yuhang Wang, Mengli Xue, Yun Ding, Han Zhang, Kai Wang, Jie Ren, Xin Li, Meilin Xu, Jun Lv, Zixiao Wang, Daqiang Sun","doi":"10.1186/s40644-024-00813-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To develop a multimodal predictive model, Radiomics Integrated TLSs System (RAITS), based on preoperative CT radiomic features for the identification of TLSs in stage I lung adenocarcinoma patients and to evaluate its potential in prognosis stratification and guiding personalized treatment.</p><p><strong>Methods: </strong>The most recent preoperative chest CT thin-slice scans and postoperative hematoxylin and eosin-stained pathology sections of patients diagnosed with stage I LUAD were retrospectively collected. Tumor segmentation was achieved using an automatic virtual adversarial training segmentation algorithm based on a three-dimensional U-shape convolutional neural network (3D U-Net). Radiomic features were extracted from the tumor and peritumoral areas, with extensions of 2 mm, 4 mm, 6 mm, and 8 mm, respectively, and deep learning image features were extracted through a convolutional neural network. Subsequently, the RAITS was constructed. The performance of RAITS was then evaluated in both the train and validation cohorts.</p><p><strong>Results: </strong>RAITS demonstrated superior AUC, sensitivity, and specificity in both the training and external validation cohorts, outperforming traditional unimodal models. In the validation cohort, RAITS achieved an AUC of 0.78 (95% CI, 0.69-0.88) and showed higher net benefits across most threshold ranges. RAITS exhibited strong discriminative ability in risk stratification, with p < 0.01 in the training cohort and p = 0.02 in the validation cohort, consistent with the actual predictive performance of TLSs, where TLS-positive patients had significantly higher recurrence-free survival (RFS) compared to TLS-negative patients (p = 0.04 in the training cohort, p = 0.02 in the validation cohort).</p><p><strong>Conclusion: </strong>As a multimodal predictive model based on preoperative CT radiomic features, RAITS demonstrated excellent performance in identifying TLSs in stage I LUAD and holds potential value in clinical decision-making.</p>","PeriodicalId":9548,"journal":{"name":"Cancer Imaging","volume":"24 1","pages":"167"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11654080/pdf/","citationCount":"0","resultStr":"{\"title\":\"Preoperative assessment of tertiary lymphoid structures in stage I lung adenocarcinoma using CT radiomics: a multicenter retrospective cohort study.\",\"authors\":\"Xiaojiang Zhao, Yuhang Wang, Mengli Xue, Yun Ding, Han Zhang, Kai Wang, Jie Ren, Xin Li, Meilin Xu, Jun Lv, Zixiao Wang, Daqiang Sun\",\"doi\":\"10.1186/s40644-024-00813-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To develop a multimodal predictive model, Radiomics Integrated TLSs System (RAITS), based on preoperative CT radiomic features for the identification of TLSs in stage I lung adenocarcinoma patients and to evaluate its potential in prognosis stratification and guiding personalized treatment.</p><p><strong>Methods: </strong>The most recent preoperative chest CT thin-slice scans and postoperative hematoxylin and eosin-stained pathology sections of patients diagnosed with stage I LUAD were retrospectively collected. Tumor segmentation was achieved using an automatic virtual adversarial training segmentation algorithm based on a three-dimensional U-shape convolutional neural network (3D U-Net). Radiomic features were extracted from the tumor and peritumoral areas, with extensions of 2 mm, 4 mm, 6 mm, and 8 mm, respectively, and deep learning image features were extracted through a convolutional neural network. Subsequently, the RAITS was constructed. The performance of RAITS was then evaluated in both the train and validation cohorts.</p><p><strong>Results: </strong>RAITS demonstrated superior AUC, sensitivity, and specificity in both the training and external validation cohorts, outperforming traditional unimodal models. In the validation cohort, RAITS achieved an AUC of 0.78 (95% CI, 0.69-0.88) and showed higher net benefits across most threshold ranges. RAITS exhibited strong discriminative ability in risk stratification, with p < 0.01 in the training cohort and p = 0.02 in the validation cohort, consistent with the actual predictive performance of TLSs, where TLS-positive patients had significantly higher recurrence-free survival (RFS) compared to TLS-negative patients (p = 0.04 in the training cohort, p = 0.02 in the validation cohort).</p><p><strong>Conclusion: </strong>As a multimodal predictive model based on preoperative CT radiomic features, RAITS demonstrated excellent performance in identifying TLSs in stage I LUAD and holds potential value in clinical decision-making.</p>\",\"PeriodicalId\":9548,\"journal\":{\"name\":\"Cancer Imaging\",\"volume\":\"24 1\",\"pages\":\"167\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11654080/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40644-024-00813-5\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40644-024-00813-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
Preoperative assessment of tertiary lymphoid structures in stage I lung adenocarcinoma using CT radiomics: a multicenter retrospective cohort study.
Objective: To develop a multimodal predictive model, Radiomics Integrated TLSs System (RAITS), based on preoperative CT radiomic features for the identification of TLSs in stage I lung adenocarcinoma patients and to evaluate its potential in prognosis stratification and guiding personalized treatment.
Methods: The most recent preoperative chest CT thin-slice scans and postoperative hematoxylin and eosin-stained pathology sections of patients diagnosed with stage I LUAD were retrospectively collected. Tumor segmentation was achieved using an automatic virtual adversarial training segmentation algorithm based on a three-dimensional U-shape convolutional neural network (3D U-Net). Radiomic features were extracted from the tumor and peritumoral areas, with extensions of 2 mm, 4 mm, 6 mm, and 8 mm, respectively, and deep learning image features were extracted through a convolutional neural network. Subsequently, the RAITS was constructed. The performance of RAITS was then evaluated in both the train and validation cohorts.
Results: RAITS demonstrated superior AUC, sensitivity, and specificity in both the training and external validation cohorts, outperforming traditional unimodal models. In the validation cohort, RAITS achieved an AUC of 0.78 (95% CI, 0.69-0.88) and showed higher net benefits across most threshold ranges. RAITS exhibited strong discriminative ability in risk stratification, with p < 0.01 in the training cohort and p = 0.02 in the validation cohort, consistent with the actual predictive performance of TLSs, where TLS-positive patients had significantly higher recurrence-free survival (RFS) compared to TLS-negative patients (p = 0.04 in the training cohort, p = 0.02 in the validation cohort).
Conclusion: As a multimodal predictive model based on preoperative CT radiomic features, RAITS demonstrated excellent performance in identifying TLSs in stage I LUAD and holds potential value in clinical decision-making.
Cancer ImagingONCOLOGY-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
CiteScore
7.00
自引率
0.00%
发文量
66
审稿时长
>12 weeks
期刊介绍:
Cancer Imaging is an open access, peer-reviewed journal publishing original articles, reviews and editorials written by expert international radiologists working in oncology.
The journal encompasses CT, MR, PET, ultrasound, radionuclide and multimodal imaging in all kinds of malignant tumours, plus new developments, techniques and innovations. Topics of interest include:
Breast Imaging
Chest
Complications of treatment
Ear, Nose & Throat
Gastrointestinal
Hepatobiliary & Pancreatic
Imaging biomarkers
Interventional
Lymphoma
Measurement of tumour response
Molecular functional imaging
Musculoskeletal
Neuro oncology
Nuclear Medicine
Paediatric.