Chen-Yu Zou , Chen Han , Fei Xing , Yan-Lin Jiang , Ming Xiong , Jesse Li-Ling , Hui-Qi Xie
{"title":"生物聚合物止血海绵的智能设计:从止血到多功能。","authors":"Chen-Yu Zou , Chen Han , Fei Xing , Yan-Lin Jiang , Ming Xiong , Jesse Li-Ling , Hui-Qi Xie","doi":"10.1016/j.bioactmat.2024.11.034","DOIUrl":null,"url":null,"abstract":"<div><div>Uncontrolled hemorrhage remains the leading cause of death in clinical and emergency care, posing a major threat to human life. To achieve effective bleeding control, many hemostatic materials have emerged. Among them, nature-derived biopolymers occupy an important position due to the excellent inherent biocompatibility, biodegradability and bioactivity. Additionally, sponges have been widely used in clinical and daily life because of their rapid blood absorption. Therefore, we provide the overview focusing on the latest advances and smart designs of biopolymer-based hemostatic sponge. Starting from the component, the applications of polysaccharide and polypeptide in hemostasis are systematically introduced, and the unique bioactivities such as antibacterial, antioxidant and immunomodulation are also concerned. From the perspective of sponge structure, different preparation processes can obtain unique physical properties and structures, which will affect the material properties such as hemostasis, antibacterial and tissue repair. Notably, as development frontier, the multi-functions of hemostatic materials is summarized, mainly including enhanced coagulation, antibacterial, avoiding tumor recurrence, promoting tissue repair, and hemorrhage monitoring. Finally, the challenges facing the development of biopolymer-based hemostatic sponges are emphasized, and future directions for <em>in vivo</em> biosafety, emerging materials, multiple application scenarios and translational research are proposed.</div></div>","PeriodicalId":8762,"journal":{"name":"Bioactive Materials","volume":"45 ","pages":"Pages 459-478"},"PeriodicalIF":18.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11653154/pdf/","citationCount":"0","resultStr":"{\"title\":\"Smart design in biopolymer-based hemostatic sponges: From hemostasis to multiple functions\",\"authors\":\"Chen-Yu Zou , Chen Han , Fei Xing , Yan-Lin Jiang , Ming Xiong , Jesse Li-Ling , Hui-Qi Xie\",\"doi\":\"10.1016/j.bioactmat.2024.11.034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Uncontrolled hemorrhage remains the leading cause of death in clinical and emergency care, posing a major threat to human life. To achieve effective bleeding control, many hemostatic materials have emerged. Among them, nature-derived biopolymers occupy an important position due to the excellent inherent biocompatibility, biodegradability and bioactivity. Additionally, sponges have been widely used in clinical and daily life because of their rapid blood absorption. Therefore, we provide the overview focusing on the latest advances and smart designs of biopolymer-based hemostatic sponge. Starting from the component, the applications of polysaccharide and polypeptide in hemostasis are systematically introduced, and the unique bioactivities such as antibacterial, antioxidant and immunomodulation are also concerned. From the perspective of sponge structure, different preparation processes can obtain unique physical properties and structures, which will affect the material properties such as hemostasis, antibacterial and tissue repair. Notably, as development frontier, the multi-functions of hemostatic materials is summarized, mainly including enhanced coagulation, antibacterial, avoiding tumor recurrence, promoting tissue repair, and hemorrhage monitoring. Finally, the challenges facing the development of biopolymer-based hemostatic sponges are emphasized, and future directions for <em>in vivo</em> biosafety, emerging materials, multiple application scenarios and translational research are proposed.</div></div>\",\"PeriodicalId\":8762,\"journal\":{\"name\":\"Bioactive Materials\",\"volume\":\"45 \",\"pages\":\"Pages 459-478\"},\"PeriodicalIF\":18.0000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11653154/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioactive Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452199X24005267\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioactive Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452199X24005267","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Smart design in biopolymer-based hemostatic sponges: From hemostasis to multiple functions
Uncontrolled hemorrhage remains the leading cause of death in clinical and emergency care, posing a major threat to human life. To achieve effective bleeding control, many hemostatic materials have emerged. Among them, nature-derived biopolymers occupy an important position due to the excellent inherent biocompatibility, biodegradability and bioactivity. Additionally, sponges have been widely used in clinical and daily life because of their rapid blood absorption. Therefore, we provide the overview focusing on the latest advances and smart designs of biopolymer-based hemostatic sponge. Starting from the component, the applications of polysaccharide and polypeptide in hemostasis are systematically introduced, and the unique bioactivities such as antibacterial, antioxidant and immunomodulation are also concerned. From the perspective of sponge structure, different preparation processes can obtain unique physical properties and structures, which will affect the material properties such as hemostasis, antibacterial and tissue repair. Notably, as development frontier, the multi-functions of hemostatic materials is summarized, mainly including enhanced coagulation, antibacterial, avoiding tumor recurrence, promoting tissue repair, and hemorrhage monitoring. Finally, the challenges facing the development of biopolymer-based hemostatic sponges are emphasized, and future directions for in vivo biosafety, emerging materials, multiple application scenarios and translational research are proposed.
Bioactive MaterialsBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
28.00
自引率
6.30%
发文量
436
审稿时长
20 days
期刊介绍:
Bioactive Materials is a peer-reviewed research publication that focuses on advancements in bioactive materials. The journal accepts research papers, reviews, and rapid communications in the field of next-generation biomaterials that interact with cells, tissues, and organs in various living organisms.
The primary goal of Bioactive Materials is to promote the science and engineering of biomaterials that exhibit adaptiveness to the biological environment. These materials are specifically designed to stimulate or direct appropriate cell and tissue responses or regulate interactions with microorganisms.
The journal covers a wide range of bioactive materials, including those that are engineered or designed in terms of their physical form (e.g. particulate, fiber), topology (e.g. porosity, surface roughness), or dimensions (ranging from macro to nano-scales). Contributions are sought from the following categories of bioactive materials:
Bioactive metals and alloys
Bioactive inorganics: ceramics, glasses, and carbon-based materials
Bioactive polymers and gels
Bioactive materials derived from natural sources
Bioactive composites
These materials find applications in human and veterinary medicine, such as implants, tissue engineering scaffolds, cell/drug/gene carriers, as well as imaging and sensing devices.