Josimar M. Batista, Eduard F. Valenzuela, Helvécio C. Menezes, Zenilda L. Cardeal
{"title":"巴西室外环境PM2.5大气颗粒中挥发性和半挥发性有机化合物的探索性研究。","authors":"Josimar M. Batista, Eduard F. Valenzuela, Helvécio C. Menezes, Zenilda L. Cardeal","doi":"10.1007/s11356-024-35647-y","DOIUrl":null,"url":null,"abstract":"<div><p>The development of methods for determining volatile and semi-volatile organic compounds in public spaces has become necessary to identify potential health and environmental risks. This study presents a practical methodology for sampling, extracting, detecting, and identifying these compounds in a vehicular traffic region in Belo Horizonte, Brazil. The methodology uses direct-immersion solid phase microextraction (DI-SPME) and static headspace (SHS) to extract SVOCs/VOCs. Comprehensive time-of-flight gas chromatography mass spectrometry (GC×GC/Q-TOFMS) and gas chromatography coupled to mass spectrometry (GC/MS) were used to detect and identify compounds. The analysed samples, collected with a high-volume sampler (Hi-Vol) with quartz filters and in which particulate matter (PM<sub>2.5</sub>) was retained, showed the presence of more than 200 compounds, both biogenic (natural origin) and anthropogenic (human origin). Regarding the distribution of chemical classes, aromatic compounds were predominantly found at 29.2%, followed by esters at 20.8%, non-aromatic hydrocarbons at 5.6%, and carboxylic acids at 9.4%. Static headspace gas chromatography (HS-GC) enabled the identification and quantification of 21 volatile compounds, including BETX, dichloromethane, chloroform, and naphthalene, which are currently regulated by the US Environmental Protection Agency (EPA).</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":545,"journal":{"name":"Environmental Science and Pollution Research","volume":"32 2","pages":"657 - 676"},"PeriodicalIF":5.8000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An exploratory study of volatile and semi-volatile organic compounds in PM2.5 atmospheric particles from an outdoor environment in Brazil\",\"authors\":\"Josimar M. Batista, Eduard F. Valenzuela, Helvécio C. Menezes, Zenilda L. Cardeal\",\"doi\":\"10.1007/s11356-024-35647-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The development of methods for determining volatile and semi-volatile organic compounds in public spaces has become necessary to identify potential health and environmental risks. This study presents a practical methodology for sampling, extracting, detecting, and identifying these compounds in a vehicular traffic region in Belo Horizonte, Brazil. The methodology uses direct-immersion solid phase microextraction (DI-SPME) and static headspace (SHS) to extract SVOCs/VOCs. Comprehensive time-of-flight gas chromatography mass spectrometry (GC×GC/Q-TOFMS) and gas chromatography coupled to mass spectrometry (GC/MS) were used to detect and identify compounds. The analysed samples, collected with a high-volume sampler (Hi-Vol) with quartz filters and in which particulate matter (PM<sub>2.5</sub>) was retained, showed the presence of more than 200 compounds, both biogenic (natural origin) and anthropogenic (human origin). Regarding the distribution of chemical classes, aromatic compounds were predominantly found at 29.2%, followed by esters at 20.8%, non-aromatic hydrocarbons at 5.6%, and carboxylic acids at 9.4%. Static headspace gas chromatography (HS-GC) enabled the identification and quantification of 21 volatile compounds, including BETX, dichloromethane, chloroform, and naphthalene, which are currently regulated by the US Environmental Protection Agency (EPA).</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":545,\"journal\":{\"name\":\"Environmental Science and Pollution Research\",\"volume\":\"32 2\",\"pages\":\"657 - 676\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science and Pollution Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11356-024-35647-y\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s11356-024-35647-y","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
An exploratory study of volatile and semi-volatile organic compounds in PM2.5 atmospheric particles from an outdoor environment in Brazil
The development of methods for determining volatile and semi-volatile organic compounds in public spaces has become necessary to identify potential health and environmental risks. This study presents a practical methodology for sampling, extracting, detecting, and identifying these compounds in a vehicular traffic region in Belo Horizonte, Brazil. The methodology uses direct-immersion solid phase microextraction (DI-SPME) and static headspace (SHS) to extract SVOCs/VOCs. Comprehensive time-of-flight gas chromatography mass spectrometry (GC×GC/Q-TOFMS) and gas chromatography coupled to mass spectrometry (GC/MS) were used to detect and identify compounds. The analysed samples, collected with a high-volume sampler (Hi-Vol) with quartz filters and in which particulate matter (PM2.5) was retained, showed the presence of more than 200 compounds, both biogenic (natural origin) and anthropogenic (human origin). Regarding the distribution of chemical classes, aromatic compounds were predominantly found at 29.2%, followed by esters at 20.8%, non-aromatic hydrocarbons at 5.6%, and carboxylic acids at 9.4%. Static headspace gas chromatography (HS-GC) enabled the identification and quantification of 21 volatile compounds, including BETX, dichloromethane, chloroform, and naphthalene, which are currently regulated by the US Environmental Protection Agency (EPA).
期刊介绍:
Environmental Science and Pollution Research (ESPR) serves the international community in all areas of Environmental Science and related subjects with emphasis on chemical compounds. This includes:
- Terrestrial Biology and Ecology
- Aquatic Biology and Ecology
- Atmospheric Chemistry
- Environmental Microbiology/Biobased Energy Sources
- Phytoremediation and Ecosystem Restoration
- Environmental Analyses and Monitoring
- Assessment of Risks and Interactions of Pollutants in the Environment
- Conservation Biology and Sustainable Agriculture
- Impact of Chemicals/Pollutants on Human and Animal Health
It reports from a broad interdisciplinary outlook.