重复竞争和生态变化推动了林氏菌群的进化。(苏柏科),全新中心的喙莎草。

IF 3.6 2区 生物学 Q1 PLANT SCIENCES
Lucas Costa, Natália Castro, Christopher E Buddenhagen, André Marques, Andrea Pedrosa-Harand, Gustavo Souza
{"title":"重复竞争和生态变化推动了林氏菌群的进化。(苏柏科),全新中心的喙莎草。","authors":"Lucas Costa, Natália Castro, Christopher E Buddenhagen, André Marques, Andrea Pedrosa-Harand, Gustavo Souza","doi":"10.1093/aob/mcae220","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and aims: </strong>Genomic changes triggered by polyploidy, chromosomal rearrangements, and/ or environmental stress are among factors that affect the activity of mobile elements, particularly Long Terminal Repeats Retrotransposons (LTR-RTs) and DNA transposons. Because these elements can proliferate and move throughout host genomes, altering the genetic, epigenetic and nucleotypic landscape, they have been recognized as a relevant evolutionary force. Beaksedges (Rhynchospora) stand out for their wide cosmopolitan distribution, high diversity (~400 spp.) and holocentric chromosomes related to high karyotypic diversity and a centromere-specific satDNA Tyba. This makes the genus an interesting model to investigate the interactions between repetitive elements, phylogenetic relationships, and ecological variables.</p><p><strong>Methods: </strong>Here, we used comparative phylogenetic methods to investigate the forces driving the evolution of the entire set of mobile elements (mobilome) in the holocentric genus Rhynchospora. We statistically tested the impact of phylogenetic relationships, abundance of holocentromeric satDNA Tyba, diversity of repeatome composition, ecological variables, and chromosome number in mobile element diversification.</p><p><strong>Key results: </strong>Tyba abundance was found to be inversely correlated with LTR-RT content. Decrease of LTR abundance and diversity was also related to increase in chromosome number (likely due to fission events), and colonization of dry environments in the northern hemisphere. In contrast, we found constant LTR insertions throughout time in species with lower chromosome numbers in rainier environments in South America. A multivariate model showed that different traits drive LTR abundance, especially repeat diversity and Tyba abundance. Other mobile elements, such as non-LTR RTs and DNA transposons had insufficient abundance to be included in our models.</p><p><strong>Conclusions: </strong>Our findings suggest that LTR evolution is strongly impacted by the holocentric characteristics of Rhynchospora chromosomes, correlating with species diversification and biome shifts, and supporting a holokinetic drive model of evolution and a competitive scenario with Tyba. Altogether, our results present evidence of multi-trait influence on LTR-RT dynamics and provide a broader understanding of TE evolution in a macroevolutionary context.</p>","PeriodicalId":8023,"journal":{"name":"Annals of botany","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Repeat competition and ecological shifts drive the evolution of the mobilome in Rhynchospora Vahl. (Cyperaceae), the holocentric beaksedges.\",\"authors\":\"Lucas Costa, Natália Castro, Christopher E Buddenhagen, André Marques, Andrea Pedrosa-Harand, Gustavo Souza\",\"doi\":\"10.1093/aob/mcae220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and aims: </strong>Genomic changes triggered by polyploidy, chromosomal rearrangements, and/ or environmental stress are among factors that affect the activity of mobile elements, particularly Long Terminal Repeats Retrotransposons (LTR-RTs) and DNA transposons. Because these elements can proliferate and move throughout host genomes, altering the genetic, epigenetic and nucleotypic landscape, they have been recognized as a relevant evolutionary force. Beaksedges (Rhynchospora) stand out for their wide cosmopolitan distribution, high diversity (~400 spp.) and holocentric chromosomes related to high karyotypic diversity and a centromere-specific satDNA Tyba. This makes the genus an interesting model to investigate the interactions between repetitive elements, phylogenetic relationships, and ecological variables.</p><p><strong>Methods: </strong>Here, we used comparative phylogenetic methods to investigate the forces driving the evolution of the entire set of mobile elements (mobilome) in the holocentric genus Rhynchospora. We statistically tested the impact of phylogenetic relationships, abundance of holocentromeric satDNA Tyba, diversity of repeatome composition, ecological variables, and chromosome number in mobile element diversification.</p><p><strong>Key results: </strong>Tyba abundance was found to be inversely correlated with LTR-RT content. Decrease of LTR abundance and diversity was also related to increase in chromosome number (likely due to fission events), and colonization of dry environments in the northern hemisphere. In contrast, we found constant LTR insertions throughout time in species with lower chromosome numbers in rainier environments in South America. A multivariate model showed that different traits drive LTR abundance, especially repeat diversity and Tyba abundance. Other mobile elements, such as non-LTR RTs and DNA transposons had insufficient abundance to be included in our models.</p><p><strong>Conclusions: </strong>Our findings suggest that LTR evolution is strongly impacted by the holocentric characteristics of Rhynchospora chromosomes, correlating with species diversification and biome shifts, and supporting a holokinetic drive model of evolution and a competitive scenario with Tyba. Altogether, our results present evidence of multi-trait influence on LTR-RT dynamics and provide a broader understanding of TE evolution in a macroevolutionary context.</p>\",\"PeriodicalId\":8023,\"journal\":{\"name\":\"Annals of botany\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/aob/mcae220\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/aob/mcae220","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

背景和目的:由多倍体、染色体重排和/或环境胁迫引发的基因组变化是影响可移动元件活性的因素之一,特别是长末端重复反转录转座子(LTR-RTs)和DNA转座子。因为这些元素可以在宿主基因组中增殖和移动,改变遗传、表观遗传和核型景观,它们被认为是一种相关的进化力量。喙苔属(Rhynchospora)以其广泛的世界性分布、高多样性(约400种)和与高核型多样性和着丝粒特异性satDNA Tyba相关的全新中心染色体而闻名。这使得该属成为研究重复元素、系统发育关系和生态变量之间相互作用的有趣模型。方法:采用比较系统发育的方法,对全新世的狼孢属(Rhynchospora)的一整套活动元素(mobilome)的进化动力进行了研究。我们统计检验了系统发育关系、全新整体satDNA Tyba丰度、重复组组成多样性、生态变量和染色体数目对移动元件多样化的影响。关键结果:Tyba丰度与LTR-RT含量呈负相关。LTR丰度和多样性的降低也与染色体数目的增加(可能是由于裂变事件)和北半球干燥环境的定植有关。相比之下,我们在南美洲多雨环境中,在染色体数量较低的物种中发现了恒定的LTR插入。多元模型表明,不同性状对LTR丰度的影响最大,尤其是重复多样性和Tyba丰度。其他可移动元件,如非ltr RTs和DNA转座子的丰度不足,无法纳入我们的模型。结论:我们的研究结果表明,LTR的进化受到舌孢虫染色体全新中心特征的强烈影响,与物种多样化和生物群系转移相关,支持进化的全动力学驱动模型和与Tyba的竞争情景。总之,我们的研究结果为LTR-RT动力学的多性状影响提供了证据,并为宏观进化背景下的TE进化提供了更广泛的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Repeat competition and ecological shifts drive the evolution of the mobilome in Rhynchospora Vahl. (Cyperaceae), the holocentric beaksedges.

Background and aims: Genomic changes triggered by polyploidy, chromosomal rearrangements, and/ or environmental stress are among factors that affect the activity of mobile elements, particularly Long Terminal Repeats Retrotransposons (LTR-RTs) and DNA transposons. Because these elements can proliferate and move throughout host genomes, altering the genetic, epigenetic and nucleotypic landscape, they have been recognized as a relevant evolutionary force. Beaksedges (Rhynchospora) stand out for their wide cosmopolitan distribution, high diversity (~400 spp.) and holocentric chromosomes related to high karyotypic diversity and a centromere-specific satDNA Tyba. This makes the genus an interesting model to investigate the interactions between repetitive elements, phylogenetic relationships, and ecological variables.

Methods: Here, we used comparative phylogenetic methods to investigate the forces driving the evolution of the entire set of mobile elements (mobilome) in the holocentric genus Rhynchospora. We statistically tested the impact of phylogenetic relationships, abundance of holocentromeric satDNA Tyba, diversity of repeatome composition, ecological variables, and chromosome number in mobile element diversification.

Key results: Tyba abundance was found to be inversely correlated with LTR-RT content. Decrease of LTR abundance and diversity was also related to increase in chromosome number (likely due to fission events), and colonization of dry environments in the northern hemisphere. In contrast, we found constant LTR insertions throughout time in species with lower chromosome numbers in rainier environments in South America. A multivariate model showed that different traits drive LTR abundance, especially repeat diversity and Tyba abundance. Other mobile elements, such as non-LTR RTs and DNA transposons had insufficient abundance to be included in our models.

Conclusions: Our findings suggest that LTR evolution is strongly impacted by the holocentric characteristics of Rhynchospora chromosomes, correlating with species diversification and biome shifts, and supporting a holokinetic drive model of evolution and a competitive scenario with Tyba. Altogether, our results present evidence of multi-trait influence on LTR-RT dynamics and provide a broader understanding of TE evolution in a macroevolutionary context.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of botany
Annals of botany 生物-植物科学
CiteScore
7.90
自引率
4.80%
发文量
138
审稿时长
3 months
期刊介绍: Annals of Botany is an international plant science journal publishing novel and rigorous research in all areas of plant science. It is published monthly in both electronic and printed forms with at least two extra issues each year that focus on a particular theme in plant biology. The Journal is managed by the Annals of Botany Company, a not-for-profit educational charity established to promote plant science worldwide. The Journal publishes original research papers, invited and submitted review articles, ''Research in Context'' expanding on original work, ''Botanical Briefings'' as short overviews of important topics, and ''Viewpoints'' giving opinions. All papers in each issue are summarized briefly in Content Snapshots , there are topical news items in the Plant Cuttings section and Book Reviews . A rigorous review process ensures that readers are exposed to genuine and novel advances across a wide spectrum of botanical knowledge. All papers aim to advance knowledge and make a difference to our understanding of plant science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信