玉米幼苗中无标签聚苯乙烯微塑料的拉曼光谱鉴定与检测。

IF 8 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Science of the Total Environment Pub Date : 2025-01-01 Epub Date: 2024-12-17 DOI:10.1016/j.scitotenv.2024.178093
Zhaoxing Zhi, Yang Li, Gang Liu, Quanhong Ou
{"title":"玉米幼苗中无标签聚苯乙烯微塑料的拉曼光谱鉴定与检测。","authors":"Zhaoxing Zhi, Yang Li, Gang Liu, Quanhong Ou","doi":"10.1016/j.scitotenv.2024.178093","DOIUrl":null,"url":null,"abstract":"<p><p>Microplastics are a new type of pollutants that have attracted attention recently. However, there is limited research on the uptake of environmental microplastics by plants. In this study, scanning electron microscopy (SEM), micro-Raman spectroscopy, and Raman mapping were employed to identify and detect label-free micron-sized polystyrene (PS) microplastics accumulated in the roots and stems of maize (Zea mays L.) seedlings. The results demonstrated that the Raman spectra of PS microplastics were predominantly concentrated in the xylem and ducts of seedlings, confirming the transfer behavior of microplastics in the plants. The Raman spectra of PS microplastics in seedlings exhibited distinctive peaks at 621, 1002, 1030, and 1604 cm<sup>-1</sup>, and the matching scores of these spectra with the standard PS Raman spectrum ranged from 40.61 % to 86.93 %. Additionally, the Raman mapping facilitated the precise identification and visualization of microplastics within the roots and stems of seedlings. The smallest size of the detected PS microplastics was ∼2 μm. This study provides new insights into the use of Raman spectroscopy for the detection of microplastics in plants.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"958 ","pages":"178093"},"PeriodicalIF":8.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification and detection of label-free polystyrene microplastics in maize seedlings by Raman spectroscopy.\",\"authors\":\"Zhaoxing Zhi, Yang Li, Gang Liu, Quanhong Ou\",\"doi\":\"10.1016/j.scitotenv.2024.178093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microplastics are a new type of pollutants that have attracted attention recently. However, there is limited research on the uptake of environmental microplastics by plants. In this study, scanning electron microscopy (SEM), micro-Raman spectroscopy, and Raman mapping were employed to identify and detect label-free micron-sized polystyrene (PS) microplastics accumulated in the roots and stems of maize (Zea mays L.) seedlings. The results demonstrated that the Raman spectra of PS microplastics were predominantly concentrated in the xylem and ducts of seedlings, confirming the transfer behavior of microplastics in the plants. The Raman spectra of PS microplastics in seedlings exhibited distinctive peaks at 621, 1002, 1030, and 1604 cm<sup>-1</sup>, and the matching scores of these spectra with the standard PS Raman spectrum ranged from 40.61 % to 86.93 %. Additionally, the Raman mapping facilitated the precise identification and visualization of microplastics within the roots and stems of seedlings. The smallest size of the detected PS microplastics was ∼2 μm. This study provides new insights into the use of Raman spectroscopy for the detection of microplastics in plants.</p>\",\"PeriodicalId\":422,\"journal\":{\"name\":\"Science of the Total Environment\",\"volume\":\"958 \",\"pages\":\"178093\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of the Total Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.scitotenv.2024.178093\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.178093","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

微塑料是近年来备受关注的一类新型污染物。然而,关于植物对环境微塑料的吸收的研究有限。本研究采用扫描电镜(SEM)、微拉曼光谱(micro-Raman spectroscopy)和拉曼图谱(Raman mapping)技术,对玉米(Zea mays L.)幼苗根和茎中积累的无标记微米级聚苯乙烯(PS)微塑料进行了鉴定和检测。结果表明,PS微塑料的拉曼光谱主要集中在幼苗的木质部和导管中,证实了微塑料在植物体内的转移行为。幼苗PS微塑料的拉曼光谱在621、1002、1030和1604 cm-1处呈现出不同的谱峰,与标准PS拉曼光谱的匹配度在40.61% ~ 86.93%之间。此外,拉曼图谱有助于精确识别和可视化幼苗根和茎内的微塑料。检测到的PS微塑料的最小尺寸为~ 2 μm。该研究为利用拉曼光谱检测植物中的微塑料提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification and detection of label-free polystyrene microplastics in maize seedlings by Raman spectroscopy.

Microplastics are a new type of pollutants that have attracted attention recently. However, there is limited research on the uptake of environmental microplastics by plants. In this study, scanning electron microscopy (SEM), micro-Raman spectroscopy, and Raman mapping were employed to identify and detect label-free micron-sized polystyrene (PS) microplastics accumulated in the roots and stems of maize (Zea mays L.) seedlings. The results demonstrated that the Raman spectra of PS microplastics were predominantly concentrated in the xylem and ducts of seedlings, confirming the transfer behavior of microplastics in the plants. The Raman spectra of PS microplastics in seedlings exhibited distinctive peaks at 621, 1002, 1030, and 1604 cm-1, and the matching scores of these spectra with the standard PS Raman spectrum ranged from 40.61 % to 86.93 %. Additionally, the Raman mapping facilitated the precise identification and visualization of microplastics within the roots and stems of seedlings. The smallest size of the detected PS microplastics was ∼2 μm. This study provides new insights into the use of Raman spectroscopy for the detection of microplastics in plants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science of the Total Environment
Science of the Total Environment 环境科学-环境科学
CiteScore
17.60
自引率
10.20%
发文量
8726
审稿时长
2.4 months
期刊介绍: The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere. The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信