Senthilkumar Deivasigamani, Shareefa Thekkan, Hernando M Vergara, Owen Conolly, Mali Cosden, Thienlong Phan, Sean Smith, Jacob Marcus, Jason Uslaner, Dhivya Venkat, Robert E Drolet, Yamuna Krishnan, Souvik Modi
{"title":"多模式血液生物标志物显示阿尔茨海默病溶酶体离子含量改变","authors":"Senthilkumar Deivasigamani, Shareefa Thekkan, Hernando M Vergara, Owen Conolly, Mali Cosden, Thienlong Phan, Sean Smith, Jacob Marcus, Jason Uslaner, Dhivya Venkat, Robert E Drolet, Yamuna Krishnan, Souvik Modi","doi":"10.1021/acschembio.4c00602","DOIUrl":null,"url":null,"abstract":"<p><p>Lysosomal storage disorders (LSDs) and adult neurodegenerative disorders like Alzheimer's disease (AD) share various clinical and pathophysiological features. LSDs are characterized by impaired lysosomal activity caused by mutations in key proteins and enzymes. While lysosomal dysfunction is also linked to AD pathogenesis, its precise role in disease onset or progression remains unclear. Lysosomal ionic homeostasis is recognized as a key feature of many LSDs, but it has not been clinically linked with AD pathology. Thus, investigating whether this regulation is disrupted in AD is important, as it could lead to new therapeutic targets and biomarkers for this multifactorial disease. Here, using two-ion mapping (2-IM) technology, we quantitatively profiled lysosomal pH and Ca<sup>2+</sup> in blood-derived monocytes from AD patients and age-matched controls and correlated lysosome ionicity with age and key markers of AD pathology, namely, amyloid deposits, tauopathy, neurodegeneration, and inflammation. Together, the data show that the ionic milieu of lysosomes is dysregulated in monocytes of AD patients and correlates with key plasma biomarkers of AD. Using a machine learning model based on the above parameters, we describe a proof-of-concept combinatorial biomarker platform that accurately distinguishes between patients with AD and control participants with an area under the curve of >96%. Our study introduces a convenient, noninvasive platform with the potential to diagnose Alzheimer's disease based on fluid, cellular, and molecular biomarkers. Further, these findings highlight the potential for investigating therapeutic mechanisms capable of restoring lysosome ionic homeostasis to ameliorate AD.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":" ","pages":"137-152"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multimodal Blood-Based Biomarker Panel Reveals Altered Lysosomal Ionic Content in Alzheimer's Disease.\",\"authors\":\"Senthilkumar Deivasigamani, Shareefa Thekkan, Hernando M Vergara, Owen Conolly, Mali Cosden, Thienlong Phan, Sean Smith, Jacob Marcus, Jason Uslaner, Dhivya Venkat, Robert E Drolet, Yamuna Krishnan, Souvik Modi\",\"doi\":\"10.1021/acschembio.4c00602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lysosomal storage disorders (LSDs) and adult neurodegenerative disorders like Alzheimer's disease (AD) share various clinical and pathophysiological features. LSDs are characterized by impaired lysosomal activity caused by mutations in key proteins and enzymes. While lysosomal dysfunction is also linked to AD pathogenesis, its precise role in disease onset or progression remains unclear. Lysosomal ionic homeostasis is recognized as a key feature of many LSDs, but it has not been clinically linked with AD pathology. Thus, investigating whether this regulation is disrupted in AD is important, as it could lead to new therapeutic targets and biomarkers for this multifactorial disease. Here, using two-ion mapping (2-IM) technology, we quantitatively profiled lysosomal pH and Ca<sup>2+</sup> in blood-derived monocytes from AD patients and age-matched controls and correlated lysosome ionicity with age and key markers of AD pathology, namely, amyloid deposits, tauopathy, neurodegeneration, and inflammation. Together, the data show that the ionic milieu of lysosomes is dysregulated in monocytes of AD patients and correlates with key plasma biomarkers of AD. Using a machine learning model based on the above parameters, we describe a proof-of-concept combinatorial biomarker platform that accurately distinguishes between patients with AD and control participants with an area under the curve of >96%. Our study introduces a convenient, noninvasive platform with the potential to diagnose Alzheimer's disease based on fluid, cellular, and molecular biomarkers. Further, these findings highlight the potential for investigating therapeutic mechanisms capable of restoring lysosome ionic homeostasis to ameliorate AD.</p>\",\"PeriodicalId\":11,\"journal\":{\"name\":\"ACS Chemical Biology\",\"volume\":\" \",\"pages\":\"137-152\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Chemical Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1021/acschembio.4c00602\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acschembio.4c00602","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Lysosomal storage disorders (LSDs) and adult neurodegenerative disorders like Alzheimer's disease (AD) share various clinical and pathophysiological features. LSDs are characterized by impaired lysosomal activity caused by mutations in key proteins and enzymes. While lysosomal dysfunction is also linked to AD pathogenesis, its precise role in disease onset or progression remains unclear. Lysosomal ionic homeostasis is recognized as a key feature of many LSDs, but it has not been clinically linked with AD pathology. Thus, investigating whether this regulation is disrupted in AD is important, as it could lead to new therapeutic targets and biomarkers for this multifactorial disease. Here, using two-ion mapping (2-IM) technology, we quantitatively profiled lysosomal pH and Ca2+ in blood-derived monocytes from AD patients and age-matched controls and correlated lysosome ionicity with age and key markers of AD pathology, namely, amyloid deposits, tauopathy, neurodegeneration, and inflammation. Together, the data show that the ionic milieu of lysosomes is dysregulated in monocytes of AD patients and correlates with key plasma biomarkers of AD. Using a machine learning model based on the above parameters, we describe a proof-of-concept combinatorial biomarker platform that accurately distinguishes between patients with AD and control participants with an area under the curve of >96%. Our study introduces a convenient, noninvasive platform with the potential to diagnose Alzheimer's disease based on fluid, cellular, and molecular biomarkers. Further, these findings highlight the potential for investigating therapeutic mechanisms capable of restoring lysosome ionic homeostasis to ameliorate AD.
期刊介绍:
ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology.
The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies.
We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.