通过mn掺杂提高Pd/Fe-Oxide杂化纳米颗粒的磁热疗效率。

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
ACS Applied Nano Materials Pub Date : 2024-12-04 eCollection Date: 2024-12-13 DOI:10.1021/acsanm.4c05452
Alexandra Maier, Qi Jia, Keshav Shukla, Achim Iulian Dugulan, Peter-Leon Hagedoorn, Rogier van Oossanen, Gerard van Rhoon, Antonia G Denkova, Kristina Djanashvili
{"title":"通过mn掺杂提高Pd/Fe-Oxide杂化纳米颗粒的磁热疗效率。","authors":"Alexandra Maier, Qi Jia, Keshav Shukla, Achim Iulian Dugulan, Peter-Leon Hagedoorn, Rogier van Oossanen, Gerard van Rhoon, Antonia G Denkova, Kristina Djanashvili","doi":"10.1021/acsanm.4c05452","DOIUrl":null,"url":null,"abstract":"<p><p>Multifunctional, biocompatible magnetic materials, such as iron oxide nanoparticles (IONPs), hold great potential for biomedical applications including diagnostics (e.g., MRI) and cancer therapy. In particular, they can play a crucial role in advancing cancer thermotherapy by generating heat when administered intratumorally and when exposed to an alternating magnetic field. This heat application is often combined with radio- (chemo)therapy and/or imaging. Consequently, the design of materials for such a multimodal approach requires hybrid nanoparticles that retain their magnetic properties while integrating additional functionalities. This work introduces synthesis and investigation of magnetically enhanced nanoparticles with a palladium core (envisioned for future radiolabeling with therapeutic <sup>103</sup>Pd) and a magnetic iron oxide shell containing paramagnetic manganese (Pd/Fe|(nMn)-oxide, <i>n</i> = 0.25 and 0.5). Doping the iron oxide lattice with Mn significantly increases magnetic saturation, boosting specific loss power up to 1.7 times compared to that of undoped analogs. Interestingly, higher Mn-content in Pd/Fe|(0.5Mn)-oxide leads to a pronounced Mn outer rim, enhancing the heating efficiency at 346 kHz and 23 mT and contributing to the water exchange on the surface of the paramagnetically doped nanoparticles, resulting in additional <i>T</i> <sub>1</sub> MRI contrast. The enhanced magnetic properties of the hybrid Pd/Fe|Mn-oxide nanoparticles enable effective therapeutic outcomes with injection of only small quantities of the material, offering great potential for effective cancer treatment strategies that combine hyperthermia/thermal ablation with radiotherapy while allowing for real-time monitoring via MRI.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"7 23","pages":"27465-27475"},"PeriodicalIF":5.3000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11650597/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhancing Magnetic Hyperthermia Efficiency in Pd/Fe-Oxide Hybrid Nanoparticles through Mn-Doping.\",\"authors\":\"Alexandra Maier, Qi Jia, Keshav Shukla, Achim Iulian Dugulan, Peter-Leon Hagedoorn, Rogier van Oossanen, Gerard van Rhoon, Antonia G Denkova, Kristina Djanashvili\",\"doi\":\"10.1021/acsanm.4c05452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multifunctional, biocompatible magnetic materials, such as iron oxide nanoparticles (IONPs), hold great potential for biomedical applications including diagnostics (e.g., MRI) and cancer therapy. In particular, they can play a crucial role in advancing cancer thermotherapy by generating heat when administered intratumorally and when exposed to an alternating magnetic field. This heat application is often combined with radio- (chemo)therapy and/or imaging. Consequently, the design of materials for such a multimodal approach requires hybrid nanoparticles that retain their magnetic properties while integrating additional functionalities. This work introduces synthesis and investigation of magnetically enhanced nanoparticles with a palladium core (envisioned for future radiolabeling with therapeutic <sup>103</sup>Pd) and a magnetic iron oxide shell containing paramagnetic manganese (Pd/Fe|(nMn)-oxide, <i>n</i> = 0.25 and 0.5). Doping the iron oxide lattice with Mn significantly increases magnetic saturation, boosting specific loss power up to 1.7 times compared to that of undoped analogs. Interestingly, higher Mn-content in Pd/Fe|(0.5Mn)-oxide leads to a pronounced Mn outer rim, enhancing the heating efficiency at 346 kHz and 23 mT and contributing to the water exchange on the surface of the paramagnetically doped nanoparticles, resulting in additional <i>T</i> <sub>1</sub> MRI contrast. The enhanced magnetic properties of the hybrid Pd/Fe|Mn-oxide nanoparticles enable effective therapeutic outcomes with injection of only small quantities of the material, offering great potential for effective cancer treatment strategies that combine hyperthermia/thermal ablation with radiotherapy while allowing for real-time monitoring via MRI.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":\"7 23\",\"pages\":\"27465-27475\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11650597/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsanm.4c05452\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/13 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsanm.4c05452","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/13 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

多功能、生物相容性磁性材料,如氧化铁纳米颗粒(IONPs),在生物医学应用方面具有巨大潜力,包括诊断(如MRI)和癌症治疗。特别是,它们可以通过在瘤内施用和暴露于交变磁场时产生热量,在推进癌症热治疗中发挥关键作用。这种热应用通常与放射(化疗)治疗和/或成像相结合。因此,为这种多模态方法设计的材料需要混合纳米粒子,在保留磁性的同时集成额外的功能。这项工作介绍了磁性增强纳米颗粒的合成和研究,该纳米颗粒具有钯核(设想用于未来治疗性103Pd的放射性标记)和含有顺磁性锰的磁性氧化铁壳(Pd/Fe|(nMn)-氧化物,n = 0.25和0.5)。与未掺杂的类似物相比,在氧化铁晶格中掺杂锰显著提高了磁饱和度,使比损耗功率提高了1.7倍。有趣的是,Pd/Fe|(0.5Mn)-氧化物中较高的Mn含量导致明显的Mn外缘,提高了在346 kHz和23 mT时的加热效率,并有助于顺磁掺杂纳米颗粒表面的水交换,从而产生额外的t1 MRI对比度。混合Pd/Fe| mn -氧化物纳米颗粒的磁性增强,只需少量注射即可获得有效的治疗效果,为将热疗/热消融与放疗相结合的有效癌症治疗策略提供了巨大的潜力,同时允许通过MRI进行实时监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing Magnetic Hyperthermia Efficiency in Pd/Fe-Oxide Hybrid Nanoparticles through Mn-Doping.

Multifunctional, biocompatible magnetic materials, such as iron oxide nanoparticles (IONPs), hold great potential for biomedical applications including diagnostics (e.g., MRI) and cancer therapy. In particular, they can play a crucial role in advancing cancer thermotherapy by generating heat when administered intratumorally and when exposed to an alternating magnetic field. This heat application is often combined with radio- (chemo)therapy and/or imaging. Consequently, the design of materials for such a multimodal approach requires hybrid nanoparticles that retain their magnetic properties while integrating additional functionalities. This work introduces synthesis and investigation of magnetically enhanced nanoparticles with a palladium core (envisioned for future radiolabeling with therapeutic 103Pd) and a magnetic iron oxide shell containing paramagnetic manganese (Pd/Fe|(nMn)-oxide, n = 0.25 and 0.5). Doping the iron oxide lattice with Mn significantly increases magnetic saturation, boosting specific loss power up to 1.7 times compared to that of undoped analogs. Interestingly, higher Mn-content in Pd/Fe|(0.5Mn)-oxide leads to a pronounced Mn outer rim, enhancing the heating efficiency at 346 kHz and 23 mT and contributing to the water exchange on the surface of the paramagnetically doped nanoparticles, resulting in additional T 1 MRI contrast. The enhanced magnetic properties of the hybrid Pd/Fe|Mn-oxide nanoparticles enable effective therapeutic outcomes with injection of only small quantities of the material, offering great potential for effective cancer treatment strategies that combine hyperthermia/thermal ablation with radiotherapy while allowing for real-time monitoring via MRI.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信