非紧型黎曼对称空间间的调和黎曼淹没

IF 0.8 3区 数学 Q2 MATHEMATICS
F. E. Burstall
{"title":"非紧型黎曼对称空间间的调和黎曼淹没","authors":"F. E. Burstall","doi":"10.1112/blms.13155","DOIUrl":null,"url":null,"abstract":"<p>We construct harmonic Riemannian submersions that are retractions from symmetric spaces of noncompact type onto their rank-one totally geodesic subspaces. Among the consequences, we prove the existence of a nonconstant, globally defined complex-valued harmonic morphism from the Riemannian symmetric space associated to a split real semisimple Lie group. This completes an affirmative proof of a conjecture of Gudmundsson.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 12","pages":"3634-3642"},"PeriodicalIF":0.8000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13155","citationCount":"0","resultStr":"{\"title\":\"Harmonic Riemannian submersions between Riemannian symmetric spaces of noncompact type\",\"authors\":\"F. E. Burstall\",\"doi\":\"10.1112/blms.13155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We construct harmonic Riemannian submersions that are retractions from symmetric spaces of noncompact type onto their rank-one totally geodesic subspaces. Among the consequences, we prove the existence of a nonconstant, globally defined complex-valued harmonic morphism from the Riemannian symmetric space associated to a split real semisimple Lie group. This completes an affirmative proof of a conjecture of Gudmundsson.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"56 12\",\"pages\":\"3634-3642\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13155\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13155\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13155","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们构造了谐波黎曼淹没,它们是从对称非紧型空间缩回到它们的秩一全测地线子空间。在这些结果中,我们证明了与分裂实数半单李群相关的黎曼对称空间中的一个非常数的、全局定义的复值调和态射的存在性。这完成了对Gudmundsson猜想的肯定证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Harmonic Riemannian submersions between Riemannian symmetric spaces of noncompact type

We construct harmonic Riemannian submersions that are retractions from symmetric spaces of noncompact type onto their rank-one totally geodesic subspaces. Among the consequences, we prove the existence of a nonconstant, globally defined complex-valued harmonic morphism from the Riemannian symmetric space associated to a split real semisimple Lie group. This completes an affirmative proof of a conjecture of Gudmundsson.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信