Celia Dalou, Lenny Riguet, Johan Villeneuve, Laurent Tissandier, Thomas Rigaudier, Damien Cividini, Julien Zollinger, Guillaume Paris
{"title":"用于SIMS 34S/32S测量的金属(Fe-Ni, Fe-Ni- si)基准材料的合成与表征","authors":"Celia Dalou, Lenny Riguet, Johan Villeneuve, Laurent Tissandier, Thomas Rigaudier, Damien Cividini, Julien Zollinger, Guillaume Paris","doi":"10.1111/ggr.12584","DOIUrl":null,"url":null,"abstract":"<p>Secondary ion mass spectrometry (SIMS) is often used to determine the sulfur contents and isotope ratios of metallic alloys in meteorites or high-pressure experimental samples. However, SIMS analyses involve calibration and the determination of instrumental mass fractionation in reference materials with a matrix composition similar to that of the unknown samples. To provide metallic reference materials adapted to S measurements <i>via</i> SIMS, we synthesised a series of twenty-eight alloys comprising four FeNi(±Si) compositions (Fe<sub>95</sub>Ni<sub>5</sub>, Fe<sub>90</sub>Ni<sub>10</sub>, Fe<sub>80</sub>Ni<sub>20</sub>, and Fe<sub>80</sub>Ni<sub>15</sub>Si<sub>5</sub>) with S contents varying from 100 μg g<sup>−1</sup> to 4 g/100g using the “melt spinning” method, which guarantees that the metal alloys are rapidly quenched at ~ 10<sup>6</sup> K s<sup>−1</sup>. Sulfur contents were determined at the Service d'Analyse des Roches et Minéraux at the CRPG and absolute δ<sup>34</sup>S values were determined by multi-collector ICP-MS (MC-ICP-MS, ThermoScientific Neptune) and isotope ratio mass spectrometry (Thermoscientific Delta V). A δ<sup>34</sup>S value of 16.01 ± 0.31‰ was consistently obtained using the MC-ICP-MS, which was indistinguishable of the δ<sup>34</sup>S value of the FeS starting material (15.95 ± 0.08‰). It suggests that S did not undergo isotopic fractionation during the melting process. Of fifteen samples containing ≤ 5000 μg g<sup>−1</sup> S, SIMS measurements with 15-μm-diameter spots were repeatable to within 10% relative (1 standard deviation, 1<i>s</i>) for S contents and 2‰ for δ<sup>34</sup>S values. However, samples containing > 5000 μg g<sup>−1</sup> S showed FeNi–FeS immiscibility, leading to minor dispersion of the S mass fractions and δ<sup>34</sup>S values. No matrix effect was observed for Fe-Ni, Si, or S contents in terms of the calibration curves and instrumental mass fractionation. We ultimately recommend eight samples as reliable reference materials for S isotopic measurements by SIMS, which we can share worldwide with other laboratories.</p>","PeriodicalId":12631,"journal":{"name":"Geostandards and Geoanalytical Research","volume":"48 4","pages":"927-940"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ggr.12584","citationCount":"0","resultStr":"{\"title\":\"Synthesis and Characterization of Metallic (Fe-Ni, Fe-Ni-Si) Reference Materials for SIMS 34S/32S Measurements\",\"authors\":\"Celia Dalou, Lenny Riguet, Johan Villeneuve, Laurent Tissandier, Thomas Rigaudier, Damien Cividini, Julien Zollinger, Guillaume Paris\",\"doi\":\"10.1111/ggr.12584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Secondary ion mass spectrometry (SIMS) is often used to determine the sulfur contents and isotope ratios of metallic alloys in meteorites or high-pressure experimental samples. However, SIMS analyses involve calibration and the determination of instrumental mass fractionation in reference materials with a matrix composition similar to that of the unknown samples. To provide metallic reference materials adapted to S measurements <i>via</i> SIMS, we synthesised a series of twenty-eight alloys comprising four FeNi(±Si) compositions (Fe<sub>95</sub>Ni<sub>5</sub>, Fe<sub>90</sub>Ni<sub>10</sub>, Fe<sub>80</sub>Ni<sub>20</sub>, and Fe<sub>80</sub>Ni<sub>15</sub>Si<sub>5</sub>) with S contents varying from 100 μg g<sup>−1</sup> to 4 g/100g using the “melt spinning” method, which guarantees that the metal alloys are rapidly quenched at ~ 10<sup>6</sup> K s<sup>−1</sup>. Sulfur contents were determined at the Service d'Analyse des Roches et Minéraux at the CRPG and absolute δ<sup>34</sup>S values were determined by multi-collector ICP-MS (MC-ICP-MS, ThermoScientific Neptune) and isotope ratio mass spectrometry (Thermoscientific Delta V). A δ<sup>34</sup>S value of 16.01 ± 0.31‰ was consistently obtained using the MC-ICP-MS, which was indistinguishable of the δ<sup>34</sup>S value of the FeS starting material (15.95 ± 0.08‰). It suggests that S did not undergo isotopic fractionation during the melting process. Of fifteen samples containing ≤ 5000 μg g<sup>−1</sup> S, SIMS measurements with 15-μm-diameter spots were repeatable to within 10% relative (1 standard deviation, 1<i>s</i>) for S contents and 2‰ for δ<sup>34</sup>S values. However, samples containing > 5000 μg g<sup>−1</sup> S showed FeNi–FeS immiscibility, leading to minor dispersion of the S mass fractions and δ<sup>34</sup>S values. No matrix effect was observed for Fe-Ni, Si, or S contents in terms of the calibration curves and instrumental mass fractionation. We ultimately recommend eight samples as reliable reference materials for S isotopic measurements by SIMS, which we can share worldwide with other laboratories.</p>\",\"PeriodicalId\":12631,\"journal\":{\"name\":\"Geostandards and Geoanalytical Research\",\"volume\":\"48 4\",\"pages\":\"927-940\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ggr.12584\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geostandards and Geoanalytical Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ggr.12584\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geostandards and Geoanalytical Research","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ggr.12584","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
二次离子质谱法(SIMS)常用于测定陨石或高压实验样品中金属合金的硫含量和同位素比值。然而,SIMS分析涉及校准和确定与未知样品相似的基质组成的参比物质的仪器质量分馏。为了提供适合通过SIMS测量S的金属参考材料,我们使用“熔体纺丝”方法合成了一系列28种合金,包括四种FeNi(±Si)成分(Fe95Ni5, Fe90Ni10, Fe80Ni20和Fe80Ni15Si5), S含量从100 μg g−1到4 g/100g不等,保证了金属合金在~ 106 K S−1下快速淬火。采用Service d’analyse des Roches et minsamraux在CRPG上测定硫含量,采用多捕收剂ICP-MS (MC-ICP-MS, ThermoScientific Neptune)和同位素比值质谱(ThermoScientific Delta V)测定绝对δ34S值。MC-ICP-MS测定的δ34S值为16.01±0.31‰,与FeS原料的δ34S值(15.95±0.08‰)基本一致。这表明S在熔融过程中没有发生同位素分馏。在15个含S≤5000 μg−1 S的样品中,15 μm直径的SIMS测量值的重复性为10%(1个标准差,1 S), δ34S值的重复性为2‰。然而,含有>; 5000 μg−1 S的样品显示FeNi-FeS不混相,导致S质量分数和δ34S值的分散较小。从校准曲线和仪器质量分馏来看,Fe-Ni、Si和S含量均未观察到基质效应。我们最终推荐了8个样品作为SIMS测量S同位素的可靠参考材料,我们可以与全球其他实验室共享。
Synthesis and Characterization of Metallic (Fe-Ni, Fe-Ni-Si) Reference Materials for SIMS 34S/32S Measurements
Secondary ion mass spectrometry (SIMS) is often used to determine the sulfur contents and isotope ratios of metallic alloys in meteorites or high-pressure experimental samples. However, SIMS analyses involve calibration and the determination of instrumental mass fractionation in reference materials with a matrix composition similar to that of the unknown samples. To provide metallic reference materials adapted to S measurements via SIMS, we synthesised a series of twenty-eight alloys comprising four FeNi(±Si) compositions (Fe95Ni5, Fe90Ni10, Fe80Ni20, and Fe80Ni15Si5) with S contents varying from 100 μg g−1 to 4 g/100g using the “melt spinning” method, which guarantees that the metal alloys are rapidly quenched at ~ 106 K s−1. Sulfur contents were determined at the Service d'Analyse des Roches et Minéraux at the CRPG and absolute δ34S values were determined by multi-collector ICP-MS (MC-ICP-MS, ThermoScientific Neptune) and isotope ratio mass spectrometry (Thermoscientific Delta V). A δ34S value of 16.01 ± 0.31‰ was consistently obtained using the MC-ICP-MS, which was indistinguishable of the δ34S value of the FeS starting material (15.95 ± 0.08‰). It suggests that S did not undergo isotopic fractionation during the melting process. Of fifteen samples containing ≤ 5000 μg g−1 S, SIMS measurements with 15-μm-diameter spots were repeatable to within 10% relative (1 standard deviation, 1s) for S contents and 2‰ for δ34S values. However, samples containing > 5000 μg g−1 S showed FeNi–FeS immiscibility, leading to minor dispersion of the S mass fractions and δ34S values. No matrix effect was observed for Fe-Ni, Si, or S contents in terms of the calibration curves and instrumental mass fractionation. We ultimately recommend eight samples as reliable reference materials for S isotopic measurements by SIMS, which we can share worldwide with other laboratories.
期刊介绍:
Geostandards & Geoanalytical Research is an international journal dedicated to advancing the science of reference materials, analytical techniques and data quality relevant to the chemical analysis of geological and environmental samples. Papers are accepted for publication following peer review.