{"title":"Turán曲面数","authors":"Maya Sankar","doi":"10.1112/blms.13167","DOIUrl":null,"url":null,"abstract":"<p>We show that there is a constant <span></span><math>\n <semantics>\n <mi>c</mi>\n <annotation>$c$</annotation>\n </semantics></math> such that any 3-uniform hypergraph <span></span><math>\n <semantics>\n <mi>H</mi>\n <annotation>${\\mathcal {H}}$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math> vertices and at least <span></span><math>\n <semantics>\n <mrow>\n <mi>c</mi>\n <msup>\n <mi>n</mi>\n <mrow>\n <mn>5</mn>\n <mo>/</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$cn^{5/2}$</annotation>\n </semantics></math> edges contains a triangulation of the real projective plane as a subgraph. This resolves a conjecture of Kupavskii, Polyanskii, Tomon and Zakharov. Furthermore, our work, combined with prior results, asymptotically determines the Turán number of all surfaces.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 12","pages":"3786-3800"},"PeriodicalIF":0.8000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Turán number of surfaces\",\"authors\":\"Maya Sankar\",\"doi\":\"10.1112/blms.13167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that there is a constant <span></span><math>\\n <semantics>\\n <mi>c</mi>\\n <annotation>$c$</annotation>\\n </semantics></math> such that any 3-uniform hypergraph <span></span><math>\\n <semantics>\\n <mi>H</mi>\\n <annotation>${\\\\mathcal {H}}$</annotation>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math> vertices and at least <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>c</mi>\\n <msup>\\n <mi>n</mi>\\n <mrow>\\n <mn>5</mn>\\n <mo>/</mo>\\n <mn>2</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$cn^{5/2}$</annotation>\\n </semantics></math> edges contains a triangulation of the real projective plane as a subgraph. This resolves a conjecture of Kupavskii, Polyanskii, Tomon and Zakharov. Furthermore, our work, combined with prior results, asymptotically determines the Turán number of all surfaces.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"56 12\",\"pages\":\"3786-3800\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13167\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13167","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们证明了存在一个常数c$ c$,使得任何3-一致超图H ${\mathcal {H}}$具有n$ n$顶点且至少c$ n 5 / 2$cn^{5/2}$ edges包含实投影平面的三角剖分作为子图。这就解决了库帕夫斯基、波利安斯基、托蒙和扎哈罗夫的一个猜想。此外,我们的工作,结合先前的结果,渐近地确定了Turán所有曲面的数量。
We show that there is a constant such that any 3-uniform hypergraph with vertices and at least edges contains a triangulation of the real projective plane as a subgraph. This resolves a conjecture of Kupavskii, Polyanskii, Tomon and Zakharov. Furthermore, our work, combined with prior results, asymptotically determines the Turán number of all surfaces.