{"title":"关于Halmos问题的说明","authors":"Maximiliano Contino, Eva A. Gallardo-Gutiérrez","doi":"10.1112/blms.13159","DOIUrl":null,"url":null,"abstract":"<p>We address the existence of non-trivial closed invariant subspaces of operators <span></span><math>\n <semantics>\n <mi>T</mi>\n <annotation>$T$</annotation>\n </semantics></math> on Banach spaces whenever their square <span></span><math>\n <semantics>\n <msup>\n <mi>T</mi>\n <mn>2</mn>\n </msup>\n <annotation>$T^2$</annotation>\n </semantics></math> have or, more generally, whether there exists a polynomial <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mtext>deg</mtext>\n <mo>(</mo>\n <mi>p</mi>\n <mo>)</mo>\n <mo>⩾</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$\\mbox{deg}(p)\\geqslant 2$</annotation>\n </semantics></math> such that the lattice of invariant subspaces of <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>(</mo>\n <mi>T</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$p(T)$</annotation>\n </semantics></math> is non-trivial. In the Hilbert space setting, the <span></span><math>\n <semantics>\n <msup>\n <mi>T</mi>\n <mn>2</mn>\n </msup>\n <annotation>$T^2$</annotation>\n </semantics></math>-problem was posed by Halmos in the seventies and in 2007, Foias, Jung, Ko and Pearcy conjectured it could be equivalent to the <i>Invariant Subspace Problem</i>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 12","pages":"3681-3688"},"PeriodicalIF":0.8000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on a Halmos problem\",\"authors\":\"Maximiliano Contino, Eva A. Gallardo-Gutiérrez\",\"doi\":\"10.1112/blms.13159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We address the existence of non-trivial closed invariant subspaces of operators <span></span><math>\\n <semantics>\\n <mi>T</mi>\\n <annotation>$T$</annotation>\\n </semantics></math> on Banach spaces whenever their square <span></span><math>\\n <semantics>\\n <msup>\\n <mi>T</mi>\\n <mn>2</mn>\\n </msup>\\n <annotation>$T^2$</annotation>\\n </semantics></math> have or, more generally, whether there exists a polynomial <span></span><math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n <mtext>deg</mtext>\\n <mo>(</mo>\\n <mi>p</mi>\\n <mo>)</mo>\\n <mo>⩾</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$\\\\mbox{deg}(p)\\\\geqslant 2$</annotation>\\n </semantics></math> such that the lattice of invariant subspaces of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>p</mi>\\n <mo>(</mo>\\n <mi>T</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$p(T)$</annotation>\\n </semantics></math> is non-trivial. In the Hilbert space setting, the <span></span><math>\\n <semantics>\\n <msup>\\n <mi>T</mi>\\n <mn>2</mn>\\n </msup>\\n <annotation>$T^2$</annotation>\\n </semantics></math>-problem was posed by Halmos in the seventies and in 2007, Foias, Jung, Ko and Pearcy conjectured it could be equivalent to the <i>Invariant Subspace Problem</i>.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"56 12\",\"pages\":\"3681-3688\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13159\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13159","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
We address the existence of non-trivial closed invariant subspaces of operators on Banach spaces whenever their square have or, more generally, whether there exists a polynomial with such that the lattice of invariant subspaces of is non-trivial. In the Hilbert space setting, the -problem was posed by Halmos in the seventies and in 2007, Foias, Jung, Ko and Pearcy conjectured it could be equivalent to the Invariant Subspace Problem.