关于Halmos问题的说明

IF 0.8 3区 数学 Q2 MATHEMATICS
Maximiliano Contino, Eva A. Gallardo-Gutiérrez
{"title":"关于Halmos问题的说明","authors":"Maximiliano Contino,&nbsp;Eva A. Gallardo-Gutiérrez","doi":"10.1112/blms.13159","DOIUrl":null,"url":null,"abstract":"<p>We address the existence of non-trivial closed invariant subspaces of operators <span></span><math>\n <semantics>\n <mi>T</mi>\n <annotation>$T$</annotation>\n </semantics></math> on Banach spaces whenever their square <span></span><math>\n <semantics>\n <msup>\n <mi>T</mi>\n <mn>2</mn>\n </msup>\n <annotation>$T^2$</annotation>\n </semantics></math> have or, more generally, whether there exists a polynomial <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mtext>deg</mtext>\n <mo>(</mo>\n <mi>p</mi>\n <mo>)</mo>\n <mo>⩾</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$\\mbox{deg}(p)\\geqslant 2$</annotation>\n </semantics></math> such that the lattice of invariant subspaces of <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>(</mo>\n <mi>T</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$p(T)$</annotation>\n </semantics></math> is non-trivial. In the Hilbert space setting, the <span></span><math>\n <semantics>\n <msup>\n <mi>T</mi>\n <mn>2</mn>\n </msup>\n <annotation>$T^2$</annotation>\n </semantics></math>-problem was posed by Halmos in the seventies and in 2007, Foias, Jung, Ko and Pearcy conjectured it could be equivalent to the <i>Invariant Subspace Problem</i>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 12","pages":"3681-3688"},"PeriodicalIF":0.8000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on a Halmos problem\",\"authors\":\"Maximiliano Contino,&nbsp;Eva A. Gallardo-Gutiérrez\",\"doi\":\"10.1112/blms.13159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We address the existence of non-trivial closed invariant subspaces of operators <span></span><math>\\n <semantics>\\n <mi>T</mi>\\n <annotation>$T$</annotation>\\n </semantics></math> on Banach spaces whenever their square <span></span><math>\\n <semantics>\\n <msup>\\n <mi>T</mi>\\n <mn>2</mn>\\n </msup>\\n <annotation>$T^2$</annotation>\\n </semantics></math> have or, more generally, whether there exists a polynomial <span></span><math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n <mtext>deg</mtext>\\n <mo>(</mo>\\n <mi>p</mi>\\n <mo>)</mo>\\n <mo>⩾</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$\\\\mbox{deg}(p)\\\\geqslant 2$</annotation>\\n </semantics></math> such that the lattice of invariant subspaces of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>p</mi>\\n <mo>(</mo>\\n <mi>T</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$p(T)$</annotation>\\n </semantics></math> is non-trivial. In the Hilbert space setting, the <span></span><math>\\n <semantics>\\n <msup>\\n <mi>T</mi>\\n <mn>2</mn>\\n </msup>\\n <annotation>$T^2$</annotation>\\n </semantics></math>-problem was posed by Halmos in the seventies and in 2007, Foias, Jung, Ko and Pearcy conjectured it could be equivalent to the <i>Invariant Subspace Problem</i>.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"56 12\",\"pages\":\"3681-3688\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13159\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13159","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们讨论了算子T $T$在Banach空间上的非平凡闭不变子空间的存在性,当它们的平方T 2 $T^2$具有,或者更一般地说,是否存在一个多项式p $p$与deg (p)小于2 $\mbox{deg}(p)\geqslant 2$使得p (T)的不变子空间的格$p(T)$是非平凡的。在希尔伯特空间设置中,t2 $T^2$ -问题是由Halmos在70年代提出的,2007年,Foias, Jung, Ko和Pearcy推测它可以等同于不变子空间问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on a Halmos problem

We address the existence of non-trivial closed invariant subspaces of operators T $T$ on Banach spaces whenever their square T 2 $T^2$ have or, more generally, whether there exists a polynomial p $p$ with deg ( p ) 2 $\mbox{deg}(p)\geqslant 2$ such that the lattice of invariant subspaces of p ( T ) $p(T)$ is non-trivial. In the Hilbert space setting, the T 2 $T^2$ -problem was posed by Halmos in the seventies and in 2007, Foias, Jung, Ko and Pearcy conjectured it could be equivalent to the Invariant Subspace Problem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信