关于窄Schreier图的子群

IF 0.8 3区 数学 Q2 MATHEMATICS
Pénélope Azuelos
{"title":"关于窄Schreier图的子群","authors":"Pénélope Azuelos","doi":"10.1112/blms.13157","DOIUrl":null,"url":null,"abstract":"<p>We study finitely generated pairs of groups <span></span><math>\n <semantics>\n <mrow>\n <mi>H</mi>\n <mo>⩽</mo>\n <mi>G</mi>\n </mrow>\n <annotation>$H \\leqslant G$</annotation>\n </semantics></math> such that the Schreier graph of <span></span><math>\n <semantics>\n <mi>H</mi>\n <annotation>$H$</annotation>\n </semantics></math> has at least two ends and is <i>narrow</i>. Examples of narrow Schreier graphs include those that are quasi-isometric to finitely ended trees or have linear growth. Under this hypothesis, we show that <span></span><math>\n <semantics>\n <mi>H</mi>\n <annotation>$H$</annotation>\n </semantics></math> is a virtual fiber subgroup if and only if <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> contains infinitely many double cosets of <span></span><math>\n <semantics>\n <mi>H</mi>\n <annotation>$H$</annotation>\n </semantics></math>. Along the way, we prove that if a group acts essentially on a finite-dimensional CAT(0) cube complex with no facing triples, then it virtually surjects onto the integers with kernel commensurable to a hyperplane stabiliser.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 12","pages":"3652-3668"},"PeriodicalIF":0.8000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13157","citationCount":"0","resultStr":"{\"title\":\"On subgroups with narrow Schreier graphs\",\"authors\":\"Pénélope Azuelos\",\"doi\":\"10.1112/blms.13157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study finitely generated pairs of groups <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>H</mi>\\n <mo>⩽</mo>\\n <mi>G</mi>\\n </mrow>\\n <annotation>$H \\\\leqslant G$</annotation>\\n </semantics></math> such that the Schreier graph of <span></span><math>\\n <semantics>\\n <mi>H</mi>\\n <annotation>$H$</annotation>\\n </semantics></math> has at least two ends and is <i>narrow</i>. Examples of narrow Schreier graphs include those that are quasi-isometric to finitely ended trees or have linear growth. Under this hypothesis, we show that <span></span><math>\\n <semantics>\\n <mi>H</mi>\\n <annotation>$H$</annotation>\\n </semantics></math> is a virtual fiber subgroup if and only if <span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math> contains infinitely many double cosets of <span></span><math>\\n <semantics>\\n <mi>H</mi>\\n <annotation>$H$</annotation>\\n </semantics></math>. Along the way, we prove that if a group acts essentially on a finite-dimensional CAT(0) cube complex with no facing triples, then it virtually surjects onto the integers with kernel commensurable to a hyperplane stabiliser.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"56 12\",\"pages\":\"3652-3668\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13157\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13157\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13157","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了有限生成的群对H≤G $H \leqslant G$,使得H $H$的Schreier图至少有两个端点并且是窄的。窄Schreier图的例子包括那些有限端树的准等距图或线性增长图。在此假设下,我们证明H $H$是虚光纤子群当且仅当G $G$包含无穷多个H $H$的双余集。在此过程中,我们证明了如果一个群本质上作用于一个没有面向三元组的有限维CAT(0)立方复合体上,那么它实际上投射到核可与超平面稳定子通约的整数上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On subgroups with narrow Schreier graphs

On subgroups with narrow Schreier graphs

We study finitely generated pairs of groups H G $H \leqslant G$ such that the Schreier graph of H $H$ has at least two ends and is narrow. Examples of narrow Schreier graphs include those that are quasi-isometric to finitely ended trees or have linear growth. Under this hypothesis, we show that H $H$ is a virtual fiber subgroup if and only if G $G$ contains infinitely many double cosets of H $H$ . Along the way, we prove that if a group acts essentially on a finite-dimensional CAT(0) cube complex with no facing triples, then it virtually surjects onto the integers with kernel commensurable to a hyperplane stabiliser.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信