先进灵活的脑机接口和设备,用于探索神经动力学

Brain-X Pub Date : 2024-12-12 DOI:10.1002/brx2.70009
Pancheng Zhu, Mengxia Yu, Mingzheng Wu, Yiyuan Yang
{"title":"先进灵活的脑机接口和设备,用于探索神经动力学","authors":"Pancheng Zhu,&nbsp;Mengxia Yu,&nbsp;Mingzheng Wu,&nbsp;Yiyuan Yang","doi":"10.1002/brx2.70009","DOIUrl":null,"url":null,"abstract":"<p>The rapid advancement of flexible neural interfaces and devices is revolutionizing our ability to explore the neural foundations of consciousness, intelligence, and behavior. Cutting-edge developments in materials science and system-level integration are significantly enhancing the spatiotemporal resolution of neural signal acquisition and modulation, paving the way for next-generation brain-computer interfaces. These technologies enable unprecedented investigations into the causal relationships between neural dynamics and behaviors in freely moving subjects, offering new insights into various neurocognitive domains. The integration of artificial intelligence and brain organoids with neuroscience research promises to further decode complex neural signals, deepening our understanding of multilevel neural dynamics. Beyond their scientific implications, these innovations also offer transformative possibilities for the diagnosis, treatment, and management of neurological and psychiatric disorders. This perspective paper examines how flexible neural interfaces overcome the limitations of traditional neurotechnology, their potential impact on neural research, and their promising applications in treating neurological and psychiatric disorders, while also considering the ethical implications and future challenges in this rapidly evolving field.</p>","PeriodicalId":94303,"journal":{"name":"Brain-X","volume":"2 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/brx2.70009","citationCount":"0","resultStr":"{\"title\":\"Advanced flexible brain-computer interfaces and devices for the exploration of neural dynamics\",\"authors\":\"Pancheng Zhu,&nbsp;Mengxia Yu,&nbsp;Mingzheng Wu,&nbsp;Yiyuan Yang\",\"doi\":\"10.1002/brx2.70009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The rapid advancement of flexible neural interfaces and devices is revolutionizing our ability to explore the neural foundations of consciousness, intelligence, and behavior. Cutting-edge developments in materials science and system-level integration are significantly enhancing the spatiotemporal resolution of neural signal acquisition and modulation, paving the way for next-generation brain-computer interfaces. These technologies enable unprecedented investigations into the causal relationships between neural dynamics and behaviors in freely moving subjects, offering new insights into various neurocognitive domains. The integration of artificial intelligence and brain organoids with neuroscience research promises to further decode complex neural signals, deepening our understanding of multilevel neural dynamics. Beyond their scientific implications, these innovations also offer transformative possibilities for the diagnosis, treatment, and management of neurological and psychiatric disorders. This perspective paper examines how flexible neural interfaces overcome the limitations of traditional neurotechnology, their potential impact on neural research, and their promising applications in treating neurological and psychiatric disorders, while also considering the ethical implications and future challenges in this rapidly evolving field.</p>\",\"PeriodicalId\":94303,\"journal\":{\"name\":\"Brain-X\",\"volume\":\"2 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/brx2.70009\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain-X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/brx2.70009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain-X","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/brx2.70009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

灵活的神经接口和设备的快速发展正在彻底改变我们探索意识、智能和行为的神经基础的能力。材料科学和系统级集成的前沿发展显著提高了神经信号采集和调制的时空分辨率,为下一代脑机接口铺平了道路。这些技术使人们能够前所未有地研究自由运动对象的神经动力学和行为之间的因果关系,为各种神经认知领域提供新的见解。人工智能和脑类器官与神经科学研究的结合有望进一步解码复杂的神经信号,加深我们对多层次神经动力学的理解。除了科学意义之外,这些创新还为神经和精神疾病的诊断、治疗和管理提供了变革性的可能性。这篇前瞻性论文探讨了灵活的神经接口如何克服传统神经技术的局限性,它们对神经研究的潜在影响,以及它们在治疗神经和精神疾病方面的有希望的应用,同时也考虑了这个快速发展领域的伦理影响和未来挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Advanced flexible brain-computer interfaces and devices for the exploration of neural dynamics

Advanced flexible brain-computer interfaces and devices for the exploration of neural dynamics

The rapid advancement of flexible neural interfaces and devices is revolutionizing our ability to explore the neural foundations of consciousness, intelligence, and behavior. Cutting-edge developments in materials science and system-level integration are significantly enhancing the spatiotemporal resolution of neural signal acquisition and modulation, paving the way for next-generation brain-computer interfaces. These technologies enable unprecedented investigations into the causal relationships between neural dynamics and behaviors in freely moving subjects, offering new insights into various neurocognitive domains. The integration of artificial intelligence and brain organoids with neuroscience research promises to further decode complex neural signals, deepening our understanding of multilevel neural dynamics. Beyond their scientific implications, these innovations also offer transformative possibilities for the diagnosis, treatment, and management of neurological and psychiatric disorders. This perspective paper examines how flexible neural interfaces overcome the limitations of traditional neurotechnology, their potential impact on neural research, and their promising applications in treating neurological and psychiatric disorders, while also considering the ethical implications and future challenges in this rapidly evolving field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信