{"title":"基于学习的混合动力汽车分层能量管理控制策略","authors":"Yanfang Chen, Xuefang Li","doi":"10.1049/cth2.12749","DOIUrl":null,"url":null,"abstract":"<p>In this work, a novel energy management control framework is developed for hybrid electric vehicles (HEVs) driving in car-following scenarios. In order to enhance the energy efficiency while maintaining the driving safety, a hierarchical control approach consisting of an upper level speed tracking control scheme and a lower level energy management control strategy is proposed. For the upper level tracking control system, an iterative learning model predictive control (ILMPC) scheme is developed to guarantee the tracking performance and the driving safety simultaneously. Additionally, a model predictive control (MPC) algorithm is adopted at the lower level to optimize the torque distribution in real-time based on the driving cycles generated by the upper level control system. With the proposed hierarchical control framework, HEVs are able to improve the energy efficiency significantly by taking the advantages of the operational repeatability. The convergence of the proposed control strategy is analyzed rigorously, and its effectiveness is illustrated through numerical simulations.</p>","PeriodicalId":50382,"journal":{"name":"IET Control Theory and Applications","volume":"18 18","pages":"2725-2741"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.12749","citationCount":"0","resultStr":"{\"title\":\"A learning-based hierarchical energy management control strategy for hybrid electric vehicles\",\"authors\":\"Yanfang Chen, Xuefang Li\",\"doi\":\"10.1049/cth2.12749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, a novel energy management control framework is developed for hybrid electric vehicles (HEVs) driving in car-following scenarios. In order to enhance the energy efficiency while maintaining the driving safety, a hierarchical control approach consisting of an upper level speed tracking control scheme and a lower level energy management control strategy is proposed. For the upper level tracking control system, an iterative learning model predictive control (ILMPC) scheme is developed to guarantee the tracking performance and the driving safety simultaneously. Additionally, a model predictive control (MPC) algorithm is adopted at the lower level to optimize the torque distribution in real-time based on the driving cycles generated by the upper level control system. With the proposed hierarchical control framework, HEVs are able to improve the energy efficiency significantly by taking the advantages of the operational repeatability. The convergence of the proposed control strategy is analyzed rigorously, and its effectiveness is illustrated through numerical simulations.</p>\",\"PeriodicalId\":50382,\"journal\":{\"name\":\"IET Control Theory and Applications\",\"volume\":\"18 18\",\"pages\":\"2725-2741\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.12749\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Control Theory and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cth2.12749\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Control Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cth2.12749","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
A learning-based hierarchical energy management control strategy for hybrid electric vehicles
In this work, a novel energy management control framework is developed for hybrid electric vehicles (HEVs) driving in car-following scenarios. In order to enhance the energy efficiency while maintaining the driving safety, a hierarchical control approach consisting of an upper level speed tracking control scheme and a lower level energy management control strategy is proposed. For the upper level tracking control system, an iterative learning model predictive control (ILMPC) scheme is developed to guarantee the tracking performance and the driving safety simultaneously. Additionally, a model predictive control (MPC) algorithm is adopted at the lower level to optimize the torque distribution in real-time based on the driving cycles generated by the upper level control system. With the proposed hierarchical control framework, HEVs are able to improve the energy efficiency significantly by taking the advantages of the operational repeatability. The convergence of the proposed control strategy is analyzed rigorously, and its effectiveness is illustrated through numerical simulations.
期刊介绍:
IET Control Theory & Applications is devoted to control systems in the broadest sense, covering new theoretical results and the applications of new and established control methods. Among the topics of interest are system modelling, identification and simulation, the analysis and design of control systems (including computer-aided design), and practical implementation. The scope encompasses technological, economic, physiological (biomedical) and other systems, including man-machine interfaces.
Most of the papers published deal with original work from industrial and government laboratories and universities, but subject reviews and tutorial expositions of current methods are welcomed. Correspondence discussing published papers is also welcomed.
Applications papers need not necessarily involve new theory. Papers which describe new realisations of established methods, or control techniques applied in a novel situation, or practical studies which compare various designs, would be of interest. Of particular value are theoretical papers which discuss the applicability of new work or applications which engender new theoretical applications.