底栖动物吃它们的纤维:南极深海无脊椎动物对人为微碎片的摄入取决于摄食生态

IF 11.3 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Gabriel Stefanelli-Silva*, Pâmela Friedemann, Beatriz Rocha de Moraes, Romulo Augusto Ando, Lúcia de Siqueira Campos, Mônica Angélica Varella Petti, Craig R. Smith and Paulo Yukio Gomes Sumida, 
{"title":"底栖动物吃它们的纤维:南极深海无脊椎动物对人为微碎片的摄入取决于摄食生态","authors":"Gabriel Stefanelli-Silva*,&nbsp;Pâmela Friedemann,&nbsp;Beatriz Rocha de Moraes,&nbsp;Romulo Augusto Ando,&nbsp;Lúcia de Siqueira Campos,&nbsp;Mônica Angélica Varella Petti,&nbsp;Craig R. Smith and Paulo Yukio Gomes Sumida,&nbsp;","doi":"10.1021/acs.est.4c0948710.1021/acs.est.4c09487","DOIUrl":null,"url":null,"abstract":"<p >Anthropogenic debris has been documented in Antarctica for the past 40 years. Upon breakdown, large pieces become microdebris, which reaches the seafloor through a variety of physical and biological processes. The Antarctic benthos, deeply reliant on sinking organic particles, is thus vulnerable to ingesting microdebris. By using benthic specimens sampled between 1986 and 2016 and deposited in biological collections, we provide the first record of microdebris in Southern Ocean deep-sea invertebrates. Specimens from 15 species (n = 169 organisms) had their gut content examined, with 13 species yielding microdebris in the shape of fibers (n = 85 fibers). The highest ingestion percentages were recorded in the sea cucumbers <i>Heterocucumis steineni</i> (100%), <i>Molpadia violacea</i> (83%) and <i>Scotoplanes globosa</i> (75%), and in the brittle star <i>Amphioplus peregrinator</i> (53%). Deposit- and suspension-feeding were the strategies which yielded the most fibers, accounting for 83.53% of particles. Seven fibers were identified as microplastics, composed of polyamide, polycarbonate, polyester, polyethylene terephthalate, polyisoprene and polysulfone. We also provide the earliest record of a microplastic in Antarctica, a polysulfone fiber ingested by a <i>Boreomysis</i> sp. mysid caught in 1986. The occurrence of fibers in the world’s most remote continental margin renews concerns of pollution in seemingly isolated regions.</p><p >Anthropogenic fibers were ingested by deep-sea megabenthos from different feeding modes and sampled since 1986 in the Antarctic shelf. These findings renew concerns regarding human impacts on this supposedly pristine environment.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"58 50","pages":"22355–22367 22355–22367"},"PeriodicalIF":11.3000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.est.4c09487","citationCount":"0","resultStr":"{\"title\":\"Bottom-Feeders Eat Their Fiber: Ingestion of Anthropogenic Microdebris by Antarctic Deep-Sea Invertebrates Depends on Feeding Ecology\",\"authors\":\"Gabriel Stefanelli-Silva*,&nbsp;Pâmela Friedemann,&nbsp;Beatriz Rocha de Moraes,&nbsp;Romulo Augusto Ando,&nbsp;Lúcia de Siqueira Campos,&nbsp;Mônica Angélica Varella Petti,&nbsp;Craig R. Smith and Paulo Yukio Gomes Sumida,&nbsp;\",\"doi\":\"10.1021/acs.est.4c0948710.1021/acs.est.4c09487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Anthropogenic debris has been documented in Antarctica for the past 40 years. Upon breakdown, large pieces become microdebris, which reaches the seafloor through a variety of physical and biological processes. The Antarctic benthos, deeply reliant on sinking organic particles, is thus vulnerable to ingesting microdebris. By using benthic specimens sampled between 1986 and 2016 and deposited in biological collections, we provide the first record of microdebris in Southern Ocean deep-sea invertebrates. Specimens from 15 species (n = 169 organisms) had their gut content examined, with 13 species yielding microdebris in the shape of fibers (n = 85 fibers). The highest ingestion percentages were recorded in the sea cucumbers <i>Heterocucumis steineni</i> (100%), <i>Molpadia violacea</i> (83%) and <i>Scotoplanes globosa</i> (75%), and in the brittle star <i>Amphioplus peregrinator</i> (53%). Deposit- and suspension-feeding were the strategies which yielded the most fibers, accounting for 83.53% of particles. Seven fibers were identified as microplastics, composed of polyamide, polycarbonate, polyester, polyethylene terephthalate, polyisoprene and polysulfone. We also provide the earliest record of a microplastic in Antarctica, a polysulfone fiber ingested by a <i>Boreomysis</i> sp. mysid caught in 1986. The occurrence of fibers in the world’s most remote continental margin renews concerns of pollution in seemingly isolated regions.</p><p >Anthropogenic fibers were ingested by deep-sea megabenthos from different feeding modes and sampled since 1986 in the Antarctic shelf. These findings renew concerns regarding human impacts on this supposedly pristine environment.</p>\",\"PeriodicalId\":36,\"journal\":{\"name\":\"环境科学与技术\",\"volume\":\"58 50\",\"pages\":\"22355–22367 22355–22367\"},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.est.4c09487\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"环境科学与技术\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.est.4c09487\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.est.4c09487","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

在过去的40年里,南极洲已经记录了人为的碎片。分解后,大块变成微碎片,通过各种物理和生物过程到达海底。南极底栖生物非常依赖下沉的有机颗粒,因此很容易摄入微碎片。通过使用1986年至2016年间采集的底栖生物标本,并在生物收集中沉积,我们提供了南大洋深海无脊椎动物微碎片的第一个记录。对来自15种(n = 169种生物)的标本进行了肠道内容物检查,其中13种产生纤维形状的微碎片(n = 85种纤维)。摄食率最高的是海参(100%)、紫海参(83%)和全球Scotoplanes(75%),海蛇尾(53%)。沉淀投料和悬浮投料是产生纤维最多的方式,占颗粒的83.53%。确定了聚酰胺、聚碳酸酯、聚酯、聚对苯二甲酸乙二醇酯、聚异戊二烯和聚砜等7种微塑料纤维。我们还提供了南极微塑料的最早记录,这是1986年捕获的Boreomysis sp. mysid摄入的聚砜纤维。在世界上最偏远的大陆边缘出现纤维,重新引起了人们对看似孤立的地区污染的关注。自1986年以来,对南极陆架不同摄食方式的深海巨型生物摄取的人为纤维进行了采样。这些发现重新引起了人们对人类对这片原始环境的影响的关注。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bottom-Feeders Eat Their Fiber: Ingestion of Anthropogenic Microdebris by Antarctic Deep-Sea Invertebrates Depends on Feeding Ecology

Anthropogenic debris has been documented in Antarctica for the past 40 years. Upon breakdown, large pieces become microdebris, which reaches the seafloor through a variety of physical and biological processes. The Antarctic benthos, deeply reliant on sinking organic particles, is thus vulnerable to ingesting microdebris. By using benthic specimens sampled between 1986 and 2016 and deposited in biological collections, we provide the first record of microdebris in Southern Ocean deep-sea invertebrates. Specimens from 15 species (n = 169 organisms) had their gut content examined, with 13 species yielding microdebris in the shape of fibers (n = 85 fibers). The highest ingestion percentages were recorded in the sea cucumbers Heterocucumis steineni (100%), Molpadia violacea (83%) and Scotoplanes globosa (75%), and in the brittle star Amphioplus peregrinator (53%). Deposit- and suspension-feeding were the strategies which yielded the most fibers, accounting for 83.53% of particles. Seven fibers were identified as microplastics, composed of polyamide, polycarbonate, polyester, polyethylene terephthalate, polyisoprene and polysulfone. We also provide the earliest record of a microplastic in Antarctica, a polysulfone fiber ingested by a Boreomysis sp. mysid caught in 1986. The occurrence of fibers in the world’s most remote continental margin renews concerns of pollution in seemingly isolated regions.

Anthropogenic fibers were ingested by deep-sea megabenthos from different feeding modes and sampled since 1986 in the Antarctic shelf. These findings renew concerns regarding human impacts on this supposedly pristine environment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信