mof中氧化还原跳变的反应类型依赖性行为──电荷输运有优先方向吗?

IF 4.6 2区 化学 Q2 CHEMISTRY, PHYSICAL
Minliang Yan, Zaya Bowman, Zachary J. Knepp, Aiden Peterson, Lisa A. Fredin and Amanda J. Morris*, 
{"title":"mof中氧化还原跳变的反应类型依赖性行为──电荷输运有优先方向吗?","authors":"Minliang Yan,&nbsp;Zaya Bowman,&nbsp;Zachary J. Knepp,&nbsp;Aiden Peterson,&nbsp;Lisa A. Fredin and Amanda J. Morris*,&nbsp;","doi":"10.1021/acs.jpclett.4c0167410.1021/acs.jpclett.4c01674","DOIUrl":null,"url":null,"abstract":"<p >Redox hopping is the primary method of electron transport through redox-active metal–organic frameworks (MOFs). While redox hopping adequately supports the electrocatalytic application of MOFs, the fundamental understandings guiding the design of redox hopping MOFs remain nascent. In this study, we probe the rate of electron and hole transport through a singular MOF scaffold to determine whether the properties of the MOF promote the transport of one carrier over the other. A redox center, [Ru<sup>II</sup>(bpy)<sub>2</sub>(bpy-COOH)]<sup>2+</sup>, where bpy = 2,2′-bipyridine and bpy-COOH = 4-carboxy-2,2′-bipyridine, was anchored within NU-1000. The electron hopping coefficients (<i>D</i><sub><i>e</i></sub>) and ion diffusion coefficients (<i>D</i><sub><i>i</i></sub>) were calculated via chronoamperometry and application of the Scholz model. We found that electrons transport more rapidly than holes in the studied MOF. Interestingly, the correlation between <i>D</i><sub><i>e</i></sub> and self-exchange rate built in previous research predicted reversely. The contradicting result indicates that spacing between the molecular moieties involved in a particular hopping process dominates the response.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"15 48","pages":"11919–11926 11919–11926"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.jpclett.4c01674","citationCount":"0","resultStr":"{\"title\":\"Reaction-Type-Dependent Behavior of Redox-Hopping in MOFs─Does Charge Transport Have a Preferred Direction?\",\"authors\":\"Minliang Yan,&nbsp;Zaya Bowman,&nbsp;Zachary J. Knepp,&nbsp;Aiden Peterson,&nbsp;Lisa A. Fredin and Amanda J. Morris*,&nbsp;\",\"doi\":\"10.1021/acs.jpclett.4c0167410.1021/acs.jpclett.4c01674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Redox hopping is the primary method of electron transport through redox-active metal–organic frameworks (MOFs). While redox hopping adequately supports the electrocatalytic application of MOFs, the fundamental understandings guiding the design of redox hopping MOFs remain nascent. In this study, we probe the rate of electron and hole transport through a singular MOF scaffold to determine whether the properties of the MOF promote the transport of one carrier over the other. A redox center, [Ru<sup>II</sup>(bpy)<sub>2</sub>(bpy-COOH)]<sup>2+</sup>, where bpy = 2,2′-bipyridine and bpy-COOH = 4-carboxy-2,2′-bipyridine, was anchored within NU-1000. The electron hopping coefficients (<i>D</i><sub><i>e</i></sub>) and ion diffusion coefficients (<i>D</i><sub><i>i</i></sub>) were calculated via chronoamperometry and application of the Scholz model. We found that electrons transport more rapidly than holes in the studied MOF. Interestingly, the correlation between <i>D</i><sub><i>e</i></sub> and self-exchange rate built in previous research predicted reversely. The contradicting result indicates that spacing between the molecular moieties involved in a particular hopping process dominates the response.</p>\",\"PeriodicalId\":62,\"journal\":{\"name\":\"The Journal of Physical Chemistry Letters\",\"volume\":\"15 48\",\"pages\":\"11919–11926 11919–11926\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.jpclett.4c01674\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpclett.4c01674\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.4c01674","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

氧化还原跳变是通过氧化还原活性金属-有机骨架(MOFs)进行电子传递的主要方法。虽然氧化还原跳变足以支持mof的电催化应用,但指导氧化还原跳变mof设计的基本理解仍处于初级阶段。在这项研究中,我们探测了电子和空穴通过单一MOF支架的传输速率,以确定MOF的性质是否促进了一种载流子在另一种载流子上的传输。一个氧化还原中心[RuII(bpy)2(bpy- cooh)]2+,其中bpy = 2,2 ' -联吡啶和bpy- cooh = 4-羧基-2,2 ' -联吡啶被锚定在NU-1000内。利用时间电流法和Scholz模型计算了电子跳跃系数De和离子扩散系数Di。我们发现在所研究的MOF中,电子的传输速度比空穴快。有趣的是,在之前的研究中,De与自我汇率之间的相关预测是相反的。相反的结果表明,参与特定跳跃过程的分子部分之间的间距主导了响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reaction-Type-Dependent Behavior of Redox-Hopping in MOFs─Does Charge Transport Have a Preferred Direction?

Redox hopping is the primary method of electron transport through redox-active metal–organic frameworks (MOFs). While redox hopping adequately supports the electrocatalytic application of MOFs, the fundamental understandings guiding the design of redox hopping MOFs remain nascent. In this study, we probe the rate of electron and hole transport through a singular MOF scaffold to determine whether the properties of the MOF promote the transport of one carrier over the other. A redox center, [RuII(bpy)2(bpy-COOH)]2+, where bpy = 2,2′-bipyridine and bpy-COOH = 4-carboxy-2,2′-bipyridine, was anchored within NU-1000. The electron hopping coefficients (De) and ion diffusion coefficients (Di) were calculated via chronoamperometry and application of the Scholz model. We found that electrons transport more rapidly than holes in the studied MOF. Interestingly, the correlation between De and self-exchange rate built in previous research predicted reversely. The contradicting result indicates that spacing between the molecular moieties involved in a particular hopping process dominates the response.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信