基于浮栅场效应晶体管生物传感器的球形核酸探针用于原子摩尔级分析物检测

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Haoran Wang, Jing Xie, Mengmeng Xiao, Yuehua Ke, Jiawang Li, Zongyu Nie, Qiaoshu Chen* and Zhiyong Zhang*, 
{"title":"基于浮栅场效应晶体管生物传感器的球形核酸探针用于原子摩尔级分析物检测","authors":"Haoran Wang,&nbsp;Jing Xie,&nbsp;Mengmeng Xiao,&nbsp;Yuehua Ke,&nbsp;Jiawang Li,&nbsp;Zongyu Nie,&nbsp;Qiaoshu Chen* and Zhiyong Zhang*,&nbsp;","doi":"10.1021/acsnano.4c1405310.1021/acsnano.4c14053","DOIUrl":null,"url":null,"abstract":"<p >Field-effect transistor (FET) sensors are attractive for the label-free detection of target biomolecules, offering ultrahigh sensitivity and a rapid response. However, conventional methods for modifying biomolecular probes on sensors often involve intricate and time-consuming procedures that require specialized training. Herein, we propose a simple and versatile approach to functionalize floating-gate (FG) FET sensors by exploiting the strong binding ability of polyvalent interactions and the three-dimensional structure of densely functionalized spherical nucleic acids (SNAs). Crucially, the SNAs can be easily deposited onto a dielectric layer under mild conditions, ensuring stable immobilization of the probes. Further, the SNAs show efficient and robust immobilization on various dielectric layers including Y<sub>2</sub>O<sub>3</sub>, Ta<sub>2</sub>O<sub>5</sub>, and HfO<sub>2</sub>, forming conjugates that resist denaturation by various agents. By modifying the DNA sequence within the SNAs, we achieved highly sensitive FG-FET biosensors for DNA, adenosine triphosphate, and viral nucleic acids at the attomolar level. For clinical samples detection, unamplified enterovirus 71 RNA at levels as low as 0.13 copies μL<sup>–1</sup> was detected within 100 s. Moreover, the sensor attained 100% accuracy for analyte detection in both positive and negative samples. Our findings provide a general and simple method for fabricating FET-based biochemical sensors and demonstrate that the SNA-modified FG-FET biosensor is a versatile and reliable integrated platform for ultrasensitive biomarker detection.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"18 50","pages":"34391–34402 34391–34402"},"PeriodicalIF":16.0000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spherical Nucleic Acid Probes on Floating-Gate Field-Effect Transistor Biosensors for Attomolar-Level Analyte Detection\",\"authors\":\"Haoran Wang,&nbsp;Jing Xie,&nbsp;Mengmeng Xiao,&nbsp;Yuehua Ke,&nbsp;Jiawang Li,&nbsp;Zongyu Nie,&nbsp;Qiaoshu Chen* and Zhiyong Zhang*,&nbsp;\",\"doi\":\"10.1021/acsnano.4c1405310.1021/acsnano.4c14053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Field-effect transistor (FET) sensors are attractive for the label-free detection of target biomolecules, offering ultrahigh sensitivity and a rapid response. However, conventional methods for modifying biomolecular probes on sensors often involve intricate and time-consuming procedures that require specialized training. Herein, we propose a simple and versatile approach to functionalize floating-gate (FG) FET sensors by exploiting the strong binding ability of polyvalent interactions and the three-dimensional structure of densely functionalized spherical nucleic acids (SNAs). Crucially, the SNAs can be easily deposited onto a dielectric layer under mild conditions, ensuring stable immobilization of the probes. Further, the SNAs show efficient and robust immobilization on various dielectric layers including Y<sub>2</sub>O<sub>3</sub>, Ta<sub>2</sub>O<sub>5</sub>, and HfO<sub>2</sub>, forming conjugates that resist denaturation by various agents. By modifying the DNA sequence within the SNAs, we achieved highly sensitive FG-FET biosensors for DNA, adenosine triphosphate, and viral nucleic acids at the attomolar level. For clinical samples detection, unamplified enterovirus 71 RNA at levels as low as 0.13 copies μL<sup>–1</sup> was detected within 100 s. Moreover, the sensor attained 100% accuracy for analyte detection in both positive and negative samples. Our findings provide a general and simple method for fabricating FET-based biochemical sensors and demonstrate that the SNA-modified FG-FET biosensor is a versatile and reliable integrated platform for ultrasensitive biomarker detection.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"18 50\",\"pages\":\"34391–34402 34391–34402\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.4c14053\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c14053","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

场效应晶体管(FET)传感器具有超高灵敏度和快速响应能力,在目标生物分子的无标记检测中具有很大的吸引力。然而,修改传感器上的生物分子探针的传统方法通常涉及复杂且耗时的过程,需要专门培训。在此,我们提出了一种简单而通用的方法,利用多价相互作用的强结合能力和密集功能化球形核酸(SNAs)的三维结构来功能化浮栅(FG) FET传感器。关键是,在温和的条件下,sna可以很容易地沉积到介电层上,确保探针的稳定固定。此外,SNAs在包括Y2O3, Ta2O5和HfO2在内的各种介电层上表现出高效和坚固的固定,形成抗各种介质变性的共轭物。通过修改SNAs内的DNA序列,我们实现了在原子摩尔水平上对DNA、三磷酸腺苷和病毒核酸高度敏感的FG-FET生物传感器。在临床样品检测中,100 s内可检测到低至0.13拷贝μL-1的未扩增肠病毒71型RNA。此外,该传感器在阳性和阴性样品的分析物检测中均达到100%的准确性。我们的研究结果为制造基于fet的生物化学传感器提供了一种通用而简单的方法,并证明了sna修饰的FG-FET生物传感器是一种通用且可靠的超灵敏生物标志物检测集成平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Spherical Nucleic Acid Probes on Floating-Gate Field-Effect Transistor Biosensors for Attomolar-Level Analyte Detection

Spherical Nucleic Acid Probes on Floating-Gate Field-Effect Transistor Biosensors for Attomolar-Level Analyte Detection

Field-effect transistor (FET) sensors are attractive for the label-free detection of target biomolecules, offering ultrahigh sensitivity and a rapid response. However, conventional methods for modifying biomolecular probes on sensors often involve intricate and time-consuming procedures that require specialized training. Herein, we propose a simple and versatile approach to functionalize floating-gate (FG) FET sensors by exploiting the strong binding ability of polyvalent interactions and the three-dimensional structure of densely functionalized spherical nucleic acids (SNAs). Crucially, the SNAs can be easily deposited onto a dielectric layer under mild conditions, ensuring stable immobilization of the probes. Further, the SNAs show efficient and robust immobilization on various dielectric layers including Y2O3, Ta2O5, and HfO2, forming conjugates that resist denaturation by various agents. By modifying the DNA sequence within the SNAs, we achieved highly sensitive FG-FET biosensors for DNA, adenosine triphosphate, and viral nucleic acids at the attomolar level. For clinical samples detection, unamplified enterovirus 71 RNA at levels as low as 0.13 copies μL–1 was detected within 100 s. Moreover, the sensor attained 100% accuracy for analyte detection in both positive and negative samples. Our findings provide a general and simple method for fabricating FET-based biochemical sensors and demonstrate that the SNA-modified FG-FET biosensor is a versatile and reliable integrated platform for ultrasensitive biomarker detection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信