Shiying Li, Qi Li, Baichao Li, Xiao Chen, Hongbin Wu, Sen Wang*, Mei Dong*, Jianguo Wang and Weibin Fan*,
{"title":"中空硅石包封的PtIn纳米团簇上丙烷高效脱氢制丙烯的研究","authors":"Shiying Li, Qi Li, Baichao Li, Xiao Chen, Hongbin Wu, Sen Wang*, Mei Dong*, Jianguo Wang and Weibin Fan*, ","doi":"10.1021/acscatal.4c0513510.1021/acscatal.4c05135","DOIUrl":null,"url":null,"abstract":"<p >Pt-based catalysts have been widely used for propane dehydrogenation to propene. However, the high reaction temperature generally induces serious sintering and agglomeration of metal species, thus leading to rapid deactivation of the catalysts. Herein, PtIn nanoclusters (NCs) encapsulated in hollow-structured silicalite-1 (designated as PtIn@S1–H) was prepared using recrystallization method. This material shows high catalytic performance in propane dehydrogenation. The propane conversion and propene selectivity reach ∼45–47.5% and ∼99%, respectively, at 547 °C at least within 167.6 h. As a result, it displays a significantly higher specific activity for C<sub>3</sub>H<sub>6</sub> formation (0.37–0.59 s<sup>–1</sup>) than Pt@S1, Pt@S1–H, and other reported Pt-based catalysts. Notably, its catalytic performance is well maintained for more than 3600 h, with propane conversion of ∼31–34% and propene selectivity of ∼91–95%, when pure propane is fed. More interestingly, this catalyst can be reused through regeneration. EXAFS, HAADF-STEM and DFT calculation, and AIMD simulation results show that hollow-structured silicalite-1 crystal morphology not only facilitates the formation of Pt<sub>5</sub>In<sub>3</sub> alloy NCs but also inhibits NC aggregation and growth. PtIn@S1–H showed a TON ≥ 38996 in contrast to 5367, 4928, 798, and 542 obtained on PtIn@S1, PtSn@S1, PtSn/Al<sub>2</sub>O<sub>3</sub>, and PtIn/Al<sub>2</sub>O<sub>3</sub>, respectively, if the catalysts were considered to be deactivated when the propane conversion was decreased by 15%. This is because alloying of In into Pt NCs weakens the interaction of C<sub>3</sub>H<sub>7</sub>* intermediates with metallic Pt NCs and the adsorption of C<sub>3</sub>H<sub>6</sub> on the catalyst surface, thus suppressing the C<sub>3</sub>H<sub>7</sub>* cleavage reaction and enhancing propane activation and propene selectivity.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"14 23","pages":"17825–17836 17825–17836"},"PeriodicalIF":13.1000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Dehydrogenation of Propane to Propene over PtIn Nanoclusters Encapsulated in Hollow-Structured Silicalite-1\",\"authors\":\"Shiying Li, Qi Li, Baichao Li, Xiao Chen, Hongbin Wu, Sen Wang*, Mei Dong*, Jianguo Wang and Weibin Fan*, \",\"doi\":\"10.1021/acscatal.4c0513510.1021/acscatal.4c05135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Pt-based catalysts have been widely used for propane dehydrogenation to propene. However, the high reaction temperature generally induces serious sintering and agglomeration of metal species, thus leading to rapid deactivation of the catalysts. Herein, PtIn nanoclusters (NCs) encapsulated in hollow-structured silicalite-1 (designated as PtIn@S1–H) was prepared using recrystallization method. This material shows high catalytic performance in propane dehydrogenation. The propane conversion and propene selectivity reach ∼45–47.5% and ∼99%, respectively, at 547 °C at least within 167.6 h. As a result, it displays a significantly higher specific activity for C<sub>3</sub>H<sub>6</sub> formation (0.37–0.59 s<sup>–1</sup>) than Pt@S1, Pt@S1–H, and other reported Pt-based catalysts. Notably, its catalytic performance is well maintained for more than 3600 h, with propane conversion of ∼31–34% and propene selectivity of ∼91–95%, when pure propane is fed. More interestingly, this catalyst can be reused through regeneration. EXAFS, HAADF-STEM and DFT calculation, and AIMD simulation results show that hollow-structured silicalite-1 crystal morphology not only facilitates the formation of Pt<sub>5</sub>In<sub>3</sub> alloy NCs but also inhibits NC aggregation and growth. PtIn@S1–H showed a TON ≥ 38996 in contrast to 5367, 4928, 798, and 542 obtained on PtIn@S1, PtSn@S1, PtSn/Al<sub>2</sub>O<sub>3</sub>, and PtIn/Al<sub>2</sub>O<sub>3</sub>, respectively, if the catalysts were considered to be deactivated when the propane conversion was decreased by 15%. This is because alloying of In into Pt NCs weakens the interaction of C<sub>3</sub>H<sub>7</sub>* intermediates with metallic Pt NCs and the adsorption of C<sub>3</sub>H<sub>6</sub> on the catalyst surface, thus suppressing the C<sub>3</sub>H<sub>7</sub>* cleavage reaction and enhancing propane activation and propene selectivity.</p>\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":\"14 23\",\"pages\":\"17825–17836 17825–17836\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acscatal.4c05135\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscatal.4c05135","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Efficient Dehydrogenation of Propane to Propene over PtIn Nanoclusters Encapsulated in Hollow-Structured Silicalite-1
Pt-based catalysts have been widely used for propane dehydrogenation to propene. However, the high reaction temperature generally induces serious sintering and agglomeration of metal species, thus leading to rapid deactivation of the catalysts. Herein, PtIn nanoclusters (NCs) encapsulated in hollow-structured silicalite-1 (designated as PtIn@S1–H) was prepared using recrystallization method. This material shows high catalytic performance in propane dehydrogenation. The propane conversion and propene selectivity reach ∼45–47.5% and ∼99%, respectively, at 547 °C at least within 167.6 h. As a result, it displays a significantly higher specific activity for C3H6 formation (0.37–0.59 s–1) than Pt@S1, Pt@S1–H, and other reported Pt-based catalysts. Notably, its catalytic performance is well maintained for more than 3600 h, with propane conversion of ∼31–34% and propene selectivity of ∼91–95%, when pure propane is fed. More interestingly, this catalyst can be reused through regeneration. EXAFS, HAADF-STEM and DFT calculation, and AIMD simulation results show that hollow-structured silicalite-1 crystal morphology not only facilitates the formation of Pt5In3 alloy NCs but also inhibits NC aggregation and growth. PtIn@S1–H showed a TON ≥ 38996 in contrast to 5367, 4928, 798, and 542 obtained on PtIn@S1, PtSn@S1, PtSn/Al2O3, and PtIn/Al2O3, respectively, if the catalysts were considered to be deactivated when the propane conversion was decreased by 15%. This is because alloying of In into Pt NCs weakens the interaction of C3H7* intermediates with metallic Pt NCs and the adsorption of C3H6 on the catalyst surface, thus suppressing the C3H7* cleavage reaction and enhancing propane activation and propene selectivity.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.