Nb单原子偶联Bi-O空位对的非对称缔合构型促进CO2光还原

IF 13.1 1区 化学 Q1 CHEMISTRY, PHYSICAL
Jun Di*, Yao Wu, Jun Xiong, Hongwei Shou, Ran Long, Hailong Chen, Peng Zhou*, Peng Zhang, Xingzhong Cao, Li Song, Wei Jiang and Zheng Liu*, 
{"title":"Nb单原子偶联Bi-O空位对的非对称缔合构型促进CO2光还原","authors":"Jun Di*,&nbsp;Yao Wu,&nbsp;Jun Xiong,&nbsp;Hongwei Shou,&nbsp;Ran Long,&nbsp;Hailong Chen,&nbsp;Peng Zhou*,&nbsp;Peng Zhang,&nbsp;Xingzhong Cao,&nbsp;Li Song,&nbsp;Wei Jiang and Zheng Liu*,&nbsp;","doi":"10.1021/acscatal.4c0440710.1021/acscatal.4c04407","DOIUrl":null,"url":null,"abstract":"<p >Precisely designing the atomic coordination structure of the catalytic center is highly desired to lower the energy barrier of CO<sub>2</sub> photoreduction. The present work shows that engineering Nb single atom coupled Bi–O vacancy pairs (<i>V</i><sub>Bi–O</sub>) into Bi<sub>24</sub>O<sub>31</sub>Br<sub>10</sub> (BOB) atomic layers can create a preferential local asymmetric structure. This configuration can result in a stronger local polarization electric field and thus prolong the carrier lifetime, as proved by ultrafast transient absorption spectroscopy. Meantime, this unique Nb SA-<i>V</i><sub>Bi–O</sub> associate favors the formation of strong chemical interaction between key *COOH intermediate and catalytic center, thus lowering the energy barrier of the rate-limiting step. Benefiting from these features, a high CO generation rate of 76.4 μmol g<sup>–1</sup> h<sup>–1</sup> for CO<sub>2</sub> photoreduction can be achieved over Nb SA-<i>V</i><sub>Bi–O</sub> BOB atomic layers in pure water, roughly 5.4 and 92.7 times higher than those of BOB atomic layers or bulk BOB, respectively. This work discloses an important paradigm for designing single atom coupled defect associates to optimize photocatalysis performance.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"14 23","pages":"17818–17824 17818–17824"},"PeriodicalIF":13.1000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymmetric Associate Configuration of Nb Single Atoms Coupled Bi–O Vacancy Pairs Boosting CO2 Photoreduction\",\"authors\":\"Jun Di*,&nbsp;Yao Wu,&nbsp;Jun Xiong,&nbsp;Hongwei Shou,&nbsp;Ran Long,&nbsp;Hailong Chen,&nbsp;Peng Zhou*,&nbsp;Peng Zhang,&nbsp;Xingzhong Cao,&nbsp;Li Song,&nbsp;Wei Jiang and Zheng Liu*,&nbsp;\",\"doi\":\"10.1021/acscatal.4c0440710.1021/acscatal.4c04407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Precisely designing the atomic coordination structure of the catalytic center is highly desired to lower the energy barrier of CO<sub>2</sub> photoreduction. The present work shows that engineering Nb single atom coupled Bi–O vacancy pairs (<i>V</i><sub>Bi–O</sub>) into Bi<sub>24</sub>O<sub>31</sub>Br<sub>10</sub> (BOB) atomic layers can create a preferential local asymmetric structure. This configuration can result in a stronger local polarization electric field and thus prolong the carrier lifetime, as proved by ultrafast transient absorption spectroscopy. Meantime, this unique Nb SA-<i>V</i><sub>Bi–O</sub> associate favors the formation of strong chemical interaction between key *COOH intermediate and catalytic center, thus lowering the energy barrier of the rate-limiting step. Benefiting from these features, a high CO generation rate of 76.4 μmol g<sup>–1</sup> h<sup>–1</sup> for CO<sub>2</sub> photoreduction can be achieved over Nb SA-<i>V</i><sub>Bi–O</sub> BOB atomic layers in pure water, roughly 5.4 and 92.7 times higher than those of BOB atomic layers or bulk BOB, respectively. This work discloses an important paradigm for designing single atom coupled defect associates to optimize photocatalysis performance.</p>\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":\"14 23\",\"pages\":\"17818–17824 17818–17824\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acscatal.4c04407\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscatal.4c04407","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

精确设计催化中心的原子配位结构是降低CO2光还原能垒的迫切需要。本研究表明,将Nb单原子偶联Bi-O空位对(VBi-O)工程引入Bi24O31Br10 (BOB)原子层可以产生优先的局部不对称结构。超快瞬态吸收光谱证明,这种结构可以产生更强的局部极化电场,从而延长载流子寿命。同时,这种独特的Nb SA-VBi-O缔合物有利于键*COOH中间体与催化中心之间形成强的化学相互作用,从而降低了限速步骤的能垒。利用这些特性,在纯水条件下,Nb SA-VBi-O BOB原子层光还原CO2的CO生成速率高达76.4 μmol g-1 h-1,分别是BOB原子层和本体BOB原子层的5.4倍和92.7倍。这项工作揭示了设计单原子耦合缺陷复合物以优化光催化性能的重要范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Asymmetric Associate Configuration of Nb Single Atoms Coupled Bi–O Vacancy Pairs Boosting CO2 Photoreduction

Asymmetric Associate Configuration of Nb Single Atoms Coupled Bi–O Vacancy Pairs Boosting CO2 Photoreduction

Precisely designing the atomic coordination structure of the catalytic center is highly desired to lower the energy barrier of CO2 photoreduction. The present work shows that engineering Nb single atom coupled Bi–O vacancy pairs (VBi–O) into Bi24O31Br10 (BOB) atomic layers can create a preferential local asymmetric structure. This configuration can result in a stronger local polarization electric field and thus prolong the carrier lifetime, as proved by ultrafast transient absorption spectroscopy. Meantime, this unique Nb SA-VBi–O associate favors the formation of strong chemical interaction between key *COOH intermediate and catalytic center, thus lowering the energy barrier of the rate-limiting step. Benefiting from these features, a high CO generation rate of 76.4 μmol g–1 h–1 for CO2 photoreduction can be achieved over Nb SA-VBi–O BOB atomic layers in pure water, roughly 5.4 and 92.7 times higher than those of BOB atomic layers or bulk BOB, respectively. This work discloses an important paradigm for designing single atom coupled defect associates to optimize photocatalysis performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信