超越基本构件:结构复杂晶体的可塑性

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Tobias Stollenwerk, Pia Carlotta Huckfeldt, Nisa Zakia Zahra Ulumuddin, Malik Schneider, Zhuocheng Xie, Sandra Korte-Kerzel
{"title":"超越基本构件:结构复杂晶体的可塑性","authors":"Tobias Stollenwerk, Pia Carlotta Huckfeldt, Nisa Zakia Zahra Ulumuddin, Malik Schneider, Zhuocheng Xie, Sandra Korte-Kerzel","doi":"10.1002/adma.202414376","DOIUrl":null,"url":null,"abstract":"Intermetallics, which encompass a wide range of compounds, often exhibit similar or closely related crystal structures, resulting in various intermetallic systems with structurally derivative phases. This study examines the hypothesis that deformation behavior can be transferred from fundamental building blocks to structurally related phases using the binary samarium-cobalt system. SmCo<sub>2</sub> and SmCo<sub>5</sub> are investigated as fundamental building blocks and compared them to the structurally related SmCo<sub>3</sub> and Sm<sub>2</sub>Co<sub>17</sub> phases. Nanoindentation and micropillar compression tests are performed to characterize the primary slip systems, complemented by generalized stacking fault energy (GSFE) calculations via atomic-scale modeling. The results show that while elastic properties of the structurally complex phases follow a rule of mixtures, their plastic deformation mechanisms are more intricate, influenced by the stacking and bonding nature within the crystal's building blocks. These findings underscore the importance of local bonding environments in predicting the mechanical behavior of structurally related intermetallics, providing crucial insights for the development of high-performance intermetallic materials.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"14 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beyond Fundamental Building Blocks: Plasticity in Structurally Complex Crystals\",\"authors\":\"Tobias Stollenwerk, Pia Carlotta Huckfeldt, Nisa Zakia Zahra Ulumuddin, Malik Schneider, Zhuocheng Xie, Sandra Korte-Kerzel\",\"doi\":\"10.1002/adma.202414376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intermetallics, which encompass a wide range of compounds, often exhibit similar or closely related crystal structures, resulting in various intermetallic systems with structurally derivative phases. This study examines the hypothesis that deformation behavior can be transferred from fundamental building blocks to structurally related phases using the binary samarium-cobalt system. SmCo<sub>2</sub> and SmCo<sub>5</sub> are investigated as fundamental building blocks and compared them to the structurally related SmCo<sub>3</sub> and Sm<sub>2</sub>Co<sub>17</sub> phases. Nanoindentation and micropillar compression tests are performed to characterize the primary slip systems, complemented by generalized stacking fault energy (GSFE) calculations via atomic-scale modeling. The results show that while elastic properties of the structurally complex phases follow a rule of mixtures, their plastic deformation mechanisms are more intricate, influenced by the stacking and bonding nature within the crystal's building blocks. These findings underscore the importance of local bonding environments in predicting the mechanical behavior of structurally related intermetallics, providing crucial insights for the development of high-performance intermetallic materials.\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202414376\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202414376","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Beyond Fundamental Building Blocks: Plasticity in Structurally Complex Crystals

Beyond Fundamental Building Blocks: Plasticity in Structurally Complex Crystals
Intermetallics, which encompass a wide range of compounds, often exhibit similar or closely related crystal structures, resulting in various intermetallic systems with structurally derivative phases. This study examines the hypothesis that deformation behavior can be transferred from fundamental building blocks to structurally related phases using the binary samarium-cobalt system. SmCo2 and SmCo5 are investigated as fundamental building blocks and compared them to the structurally related SmCo3 and Sm2Co17 phases. Nanoindentation and micropillar compression tests are performed to characterize the primary slip systems, complemented by generalized stacking fault energy (GSFE) calculations via atomic-scale modeling. The results show that while elastic properties of the structurally complex phases follow a rule of mixtures, their plastic deformation mechanisms are more intricate, influenced by the stacking and bonding nature within the crystal's building blocks. These findings underscore the importance of local bonding environments in predicting the mechanical behavior of structurally related intermetallics, providing crucial insights for the development of high-performance intermetallic materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信