Tobias Stollenwerk, Pia Carlotta Huckfeldt, Nisa Zakia Zahra Ulumuddin, Malik Schneider, Zhuocheng Xie, Sandra Korte-Kerzel
{"title":"超越基本构件:结构复杂晶体的可塑性","authors":"Tobias Stollenwerk, Pia Carlotta Huckfeldt, Nisa Zakia Zahra Ulumuddin, Malik Schneider, Zhuocheng Xie, Sandra Korte-Kerzel","doi":"10.1002/adma.202414376","DOIUrl":null,"url":null,"abstract":"Intermetallics, which encompass a wide range of compounds, often exhibit similar or closely related crystal structures, resulting in various intermetallic systems with structurally derivative phases. This study examines the hypothesis that deformation behavior can be transferred from fundamental building blocks to structurally related phases using the binary samarium-cobalt system. SmCo<sub>2</sub> and SmCo<sub>5</sub> are investigated as fundamental building blocks and compared them to the structurally related SmCo<sub>3</sub> and Sm<sub>2</sub>Co<sub>17</sub> phases. Nanoindentation and micropillar compression tests are performed to characterize the primary slip systems, complemented by generalized stacking fault energy (GSFE) calculations via atomic-scale modeling. The results show that while elastic properties of the structurally complex phases follow a rule of mixtures, their plastic deformation mechanisms are more intricate, influenced by the stacking and bonding nature within the crystal's building blocks. These findings underscore the importance of local bonding environments in predicting the mechanical behavior of structurally related intermetallics, providing crucial insights for the development of high-performance intermetallic materials.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"14 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beyond Fundamental Building Blocks: Plasticity in Structurally Complex Crystals\",\"authors\":\"Tobias Stollenwerk, Pia Carlotta Huckfeldt, Nisa Zakia Zahra Ulumuddin, Malik Schneider, Zhuocheng Xie, Sandra Korte-Kerzel\",\"doi\":\"10.1002/adma.202414376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intermetallics, which encompass a wide range of compounds, often exhibit similar or closely related crystal structures, resulting in various intermetallic systems with structurally derivative phases. This study examines the hypothesis that deformation behavior can be transferred from fundamental building blocks to structurally related phases using the binary samarium-cobalt system. SmCo<sub>2</sub> and SmCo<sub>5</sub> are investigated as fundamental building blocks and compared them to the structurally related SmCo<sub>3</sub> and Sm<sub>2</sub>Co<sub>17</sub> phases. Nanoindentation and micropillar compression tests are performed to characterize the primary slip systems, complemented by generalized stacking fault energy (GSFE) calculations via atomic-scale modeling. The results show that while elastic properties of the structurally complex phases follow a rule of mixtures, their plastic deformation mechanisms are more intricate, influenced by the stacking and bonding nature within the crystal's building blocks. These findings underscore the importance of local bonding environments in predicting the mechanical behavior of structurally related intermetallics, providing crucial insights for the development of high-performance intermetallic materials.\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202414376\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202414376","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Beyond Fundamental Building Blocks: Plasticity in Structurally Complex Crystals
Intermetallics, which encompass a wide range of compounds, often exhibit similar or closely related crystal structures, resulting in various intermetallic systems with structurally derivative phases. This study examines the hypothesis that deformation behavior can be transferred from fundamental building blocks to structurally related phases using the binary samarium-cobalt system. SmCo2 and SmCo5 are investigated as fundamental building blocks and compared them to the structurally related SmCo3 and Sm2Co17 phases. Nanoindentation and micropillar compression tests are performed to characterize the primary slip systems, complemented by generalized stacking fault energy (GSFE) calculations via atomic-scale modeling. The results show that while elastic properties of the structurally complex phases follow a rule of mixtures, their plastic deformation mechanisms are more intricate, influenced by the stacking and bonding nature within the crystal's building blocks. These findings underscore the importance of local bonding environments in predicting the mechanical behavior of structurally related intermetallics, providing crucial insights for the development of high-performance intermetallic materials.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.