分层化学介质中的化学力学自振荡微凝胶运动

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
P. S. Patwal, Stephen Mann, B. V. V. S. Pavan Kumar
{"title":"分层化学介质中的化学力学自振荡微凝胶运动","authors":"P. S. Patwal,&nbsp;Stephen Mann,&nbsp;B. V. V. S. Pavan Kumar","doi":"10.1002/adma.202415568","DOIUrl":null,"url":null,"abstract":"<p>The design of chemomechanical self-oscillators, which execute oscillations in the presence of constant stimuli lacking periodicity, is a step toward the development of autonomous and interactive soft robotic systems. This work presents a simple design of prolonged chemomechanical oscillatory movement in a microgel system capable of buoyant motility within stratified chemical media containing spatially localized sinking and floating stimuli. Three design elements are developed: a stimuli-responsive membranized calcium alginate microgel, a Percoll density gradient for providing stratified antagonistic chemical media, and transduction of microgel particle size actuation into buoyant motility via membrane-mediated displacement of the Percoll media. The presence of citrate or calcium ions in different layers of the Percoll media gives rise to swelling (buoyancy) or contraction (geotaxis), respectively, which in turn mediate the shuttling of the microgels between the layers to produce prolonged or damped chemomechanical oscillatory trajectories. The concentration-dependence of the oscillatory behavior in the stratified media, the density gap between the Percoll layers, and the kinetic asymmetry of microgel swelling and deswelling are studied. The illustrated modular design allows for the development of chemomechanical self-oscillators responsive to light, pH, or temperature, which will find applications in interactive soft robotics, autonomous microbots, and intelligent materials.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 6","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemomechanical Self-Oscillatory Microgel Motility in Stratified Chemical Media\",\"authors\":\"P. S. Patwal,&nbsp;Stephen Mann,&nbsp;B. V. V. S. Pavan Kumar\",\"doi\":\"10.1002/adma.202415568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The design of chemomechanical self-oscillators, which execute oscillations in the presence of constant stimuli lacking periodicity, is a step toward the development of autonomous and interactive soft robotic systems. This work presents a simple design of prolonged chemomechanical oscillatory movement in a microgel system capable of buoyant motility within stratified chemical media containing spatially localized sinking and floating stimuli. Three design elements are developed: a stimuli-responsive membranized calcium alginate microgel, a Percoll density gradient for providing stratified antagonistic chemical media, and transduction of microgel particle size actuation into buoyant motility via membrane-mediated displacement of the Percoll media. The presence of citrate or calcium ions in different layers of the Percoll media gives rise to swelling (buoyancy) or contraction (geotaxis), respectively, which in turn mediate the shuttling of the microgels between the layers to produce prolonged or damped chemomechanical oscillatory trajectories. The concentration-dependence of the oscillatory behavior in the stratified media, the density gap between the Percoll layers, and the kinetic asymmetry of microgel swelling and deswelling are studied. The illustrated modular design allows for the development of chemomechanical self-oscillators responsive to light, pH, or temperature, which will find applications in interactive soft robotics, autonomous microbots, and intelligent materials.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"37 6\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202415568\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202415568","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

化学机械自振器的设计,在缺乏周期性的恒定刺激下执行振荡,是自主和交互软机器人系统发展的一步。这项工作提出了一种在含有空间局部下沉和漂浮刺激的分层化学介质中具有浮力运动能力的微凝胶系统中延长化学力学振荡运动的简单设计。开发了三个设计元素:刺激响应的膜化海藻酸钙微凝胶,用于提供分层拮抗化学介质的Percoll密度梯度,以及通过膜介导的Percoll介质位移将微凝胶粒径驱动转化为浮力运动。在Percoll介质的不同层中柠檬酸盐或钙离子的存在分别引起膨胀(浮力)或收缩(地向性),这反过来又介导微凝胶在层之间的穿梭,从而产生延长或阻尼的化学力学振荡轨迹。研究了微凝胶在分层介质中振荡行为的浓度依赖性、Percoll层之间的密度间隙以及微凝胶溶胀和溶胀的动力学不对称性。所示的模块化设计允许开发对光,pH值或温度响应的化学机械自振荡器,这将在交互式软机器人,自主微型机器人和智能材料中得到应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Chemomechanical Self-Oscillatory Microgel Motility in Stratified Chemical Media

Chemomechanical Self-Oscillatory Microgel Motility in Stratified Chemical Media

Chemomechanical Self-Oscillatory Microgel Motility in Stratified Chemical Media

Chemomechanical Self-Oscillatory Microgel Motility in Stratified Chemical Media

Chemomechanical Self-Oscillatory Microgel Motility in Stratified Chemical Media

The design of chemomechanical self-oscillators, which execute oscillations in the presence of constant stimuli lacking periodicity, is a step toward the development of autonomous and interactive soft robotic systems. This work presents a simple design of prolonged chemomechanical oscillatory movement in a microgel system capable of buoyant motility within stratified chemical media containing spatially localized sinking and floating stimuli. Three design elements are developed: a stimuli-responsive membranized calcium alginate microgel, a Percoll density gradient for providing stratified antagonistic chemical media, and transduction of microgel particle size actuation into buoyant motility via membrane-mediated displacement of the Percoll media. The presence of citrate or calcium ions in different layers of the Percoll media gives rise to swelling (buoyancy) or contraction (geotaxis), respectively, which in turn mediate the shuttling of the microgels between the layers to produce prolonged or damped chemomechanical oscillatory trajectories. The concentration-dependence of the oscillatory behavior in the stratified media, the density gap between the Percoll layers, and the kinetic asymmetry of microgel swelling and deswelling are studied. The illustrated modular design allows for the development of chemomechanical self-oscillators responsive to light, pH, or temperature, which will find applications in interactive soft robotics, autonomous microbots, and intelligent materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信