Xue Yang, Lu Li, Guoshuo Shang, Meng Zhuo, Huiqing Zhu, Suyue Xu, Jingya Zhao, Xueyan Hou, Yongli Shi
{"title":"不同形态介孔二氧化硅纳米材料的口服姜黄素:合成、表征、生物安全性评价和体内抗氧化活性","authors":"Xue Yang, Lu Li, Guoshuo Shang, Meng Zhuo, Huiqing Zhu, Suyue Xu, Jingya Zhao, Xueyan Hou, Yongli Shi","doi":"10.1021/acs.langmuir.4c02871","DOIUrl":null,"url":null,"abstract":"Antioxidant play a crucial role in the prevention and treatment of diseases associated with oxidative stress. Curcumin (CUR), as a natural antioxidant, exhibits numerous therapeutic properties, including antioxidant, anti-inflammatory, antibacterial, and antitumor activities. However, its limited bioavailability and poor water solubility hinder its application as an effective antioxidant. In this study, a series of mesoporous silica nanomaterials with distinct morphologies, i.e., mesoporous silica nanoparticles (MSN) and mesoporous silica nanorods (MSR) were synthesized by a template–sediment–etching method. CUR was selected as a model drug and encapsulated into these nanomaterials to improve its bioavailability <i>in vivo</i>. The morphology and size distribution of MSN and MSR were determined through transmission electron microscopy (TEM) imaging and Zetasizer analysis. Fourier transform infrared spectroscopy (FTIR) spectra confirmed the successful encapsulation of CUR within these nanomaterials. Furthermore, these CUR-loaded silica nanomaterials, denoted as CUR@MSN and CUR@MSR, exhibited excellent DPPH and ABTS free radical scavenging activity <i>in vitro</i>. Furthermore, CUR@MSN and CUR@MSR also exhibited obvious <i>in vivo</i> antioxidant activity. This study opens up new avenues for the development of enhanced antioxidants through the utilization of mesoporous silica nanomaterials.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"23 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oral Curcumin through Mesoporous Silica Nanomaterials with Distinct Morphologies: Synthesis, Characterization, Biosafety Evaluation, and Antioxidant Activity In Vivo\",\"authors\":\"Xue Yang, Lu Li, Guoshuo Shang, Meng Zhuo, Huiqing Zhu, Suyue Xu, Jingya Zhao, Xueyan Hou, Yongli Shi\",\"doi\":\"10.1021/acs.langmuir.4c02871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Antioxidant play a crucial role in the prevention and treatment of diseases associated with oxidative stress. Curcumin (CUR), as a natural antioxidant, exhibits numerous therapeutic properties, including antioxidant, anti-inflammatory, antibacterial, and antitumor activities. However, its limited bioavailability and poor water solubility hinder its application as an effective antioxidant. In this study, a series of mesoporous silica nanomaterials with distinct morphologies, i.e., mesoporous silica nanoparticles (MSN) and mesoporous silica nanorods (MSR) were synthesized by a template–sediment–etching method. CUR was selected as a model drug and encapsulated into these nanomaterials to improve its bioavailability <i>in vivo</i>. The morphology and size distribution of MSN and MSR were determined through transmission electron microscopy (TEM) imaging and Zetasizer analysis. Fourier transform infrared spectroscopy (FTIR) spectra confirmed the successful encapsulation of CUR within these nanomaterials. Furthermore, these CUR-loaded silica nanomaterials, denoted as CUR@MSN and CUR@MSR, exhibited excellent DPPH and ABTS free radical scavenging activity <i>in vitro</i>. Furthermore, CUR@MSN and CUR@MSR also exhibited obvious <i>in vivo</i> antioxidant activity. This study opens up new avenues for the development of enhanced antioxidants through the utilization of mesoporous silica nanomaterials.\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.langmuir.4c02871\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c02871","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Oral Curcumin through Mesoporous Silica Nanomaterials with Distinct Morphologies: Synthesis, Characterization, Biosafety Evaluation, and Antioxidant Activity In Vivo
Antioxidant play a crucial role in the prevention and treatment of diseases associated with oxidative stress. Curcumin (CUR), as a natural antioxidant, exhibits numerous therapeutic properties, including antioxidant, anti-inflammatory, antibacterial, and antitumor activities. However, its limited bioavailability and poor water solubility hinder its application as an effective antioxidant. In this study, a series of mesoporous silica nanomaterials with distinct morphologies, i.e., mesoporous silica nanoparticles (MSN) and mesoporous silica nanorods (MSR) were synthesized by a template–sediment–etching method. CUR was selected as a model drug and encapsulated into these nanomaterials to improve its bioavailability in vivo. The morphology and size distribution of MSN and MSR were determined through transmission electron microscopy (TEM) imaging and Zetasizer analysis. Fourier transform infrared spectroscopy (FTIR) spectra confirmed the successful encapsulation of CUR within these nanomaterials. Furthermore, these CUR-loaded silica nanomaterials, denoted as CUR@MSN and CUR@MSR, exhibited excellent DPPH and ABTS free radical scavenging activity in vitro. Furthermore, CUR@MSN and CUR@MSR also exhibited obvious in vivo antioxidant activity. This study opens up new avenues for the development of enhanced antioxidants through the utilization of mesoporous silica nanomaterials.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).