氰基和氟增强共聚物电解质:协同促进高压锂金属电池的发展

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Tianyi Wang, Haokun Hu, Min Xiao, Shuanjin Wang, Sheng Huang, Hui Guo, Dongmei Han, Yuezhong Meng
{"title":"氰基和氟增强共聚物电解质:协同促进高压锂金属电池的发展","authors":"Tianyi Wang, Haokun Hu, Min Xiao, Shuanjin Wang, Sheng Huang, Hui Guo, Dongmei Han, Yuezhong Meng","doi":"10.1021/acsami.4c16236","DOIUrl":null,"url":null,"abstract":"In high-voltage lithium metal batteries, designing electrolytes with low salt concentrations to achieve stable electrode interfaces presents a formidable challenge. High-concentration electrolytes stabilize the interface through an anion-derived LiF-rich interphase; however, their anion-rich solvation structures compromise the ionic conductivity. This study introduces a polymer-derived interphase that maintains interface stability at low lithium salt concentrations (∼1 M). This strategy enables copolymer electrolytes to sustain the Li|Li cell for over 2500 h at 0.1 mA/cm<sup>2</sup>, even with a water content of 1000 ppm. Moreover, this research addresses the weak solvation effects in fluorinated polymer electrolytes by modulating the strongly solvating cyano groups, resulting in electrolytes with a high ionic conductivity of 4 × 10<sup>–5</sup> S/cm at 30 °C. A 143.8 Wh/kg Li|LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> pouch cell, with a lean electrolyte ratio of 5 g/Ah and a low negative/positive capacity ratio of 4, maintains a capacity retention of 90.5% after 29 cycles.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"14 7 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cyano and Fluorine-Enhanced Copolymer Electrolytes: Synergistically Boosting High-Voltage Lithium Metal Batteries\",\"authors\":\"Tianyi Wang, Haokun Hu, Min Xiao, Shuanjin Wang, Sheng Huang, Hui Guo, Dongmei Han, Yuezhong Meng\",\"doi\":\"10.1021/acsami.4c16236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In high-voltage lithium metal batteries, designing electrolytes with low salt concentrations to achieve stable electrode interfaces presents a formidable challenge. High-concentration electrolytes stabilize the interface through an anion-derived LiF-rich interphase; however, their anion-rich solvation structures compromise the ionic conductivity. This study introduces a polymer-derived interphase that maintains interface stability at low lithium salt concentrations (∼1 M). This strategy enables copolymer electrolytes to sustain the Li|Li cell for over 2500 h at 0.1 mA/cm<sup>2</sup>, even with a water content of 1000 ppm. Moreover, this research addresses the weak solvation effects in fluorinated polymer electrolytes by modulating the strongly solvating cyano groups, resulting in electrolytes with a high ionic conductivity of 4 × 10<sup>–5</sup> S/cm at 30 °C. A 143.8 Wh/kg Li|LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> pouch cell, with a lean electrolyte ratio of 5 g/Ah and a low negative/positive capacity ratio of 4, maintains a capacity retention of 90.5% after 29 cycles.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"14 7 1\",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c16236\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c16236","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在高压锂金属电池中,设计盐浓度低的电解质以实现稳定的电极界面是一项艰巨的挑战。高浓度电解质通过阴离子衍生的富含 LiF 的中间相来稳定界面,但其富含阴离子的溶解结构会影响离子导电性。本研究引入了一种聚合物衍生中间相,可在低锂盐浓度(∼1 M)下保持界面稳定。这种策略使共聚物电解质能够在 0.1 mA/cm2 的条件下维持锂电池超过 2500 小时,即使水含量为 1000 ppm。此外,这项研究还通过调节强溶解性氰基来解决含氟聚合物电解质中的弱溶解效应,从而使电解质在 30 °C 时具有 4 × 10-5 S/cm 的高离子电导率。一个 143.8 Wh/kg Li|LiNi0.8Co0.1Mn0.1O2 袋式电池的贫电解质比为 5 g/Ah,正负极容量比低至 4,经过 29 次循环后,容量保持率达到 90.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cyano and Fluorine-Enhanced Copolymer Electrolytes: Synergistically Boosting High-Voltage Lithium Metal Batteries

Cyano and Fluorine-Enhanced Copolymer Electrolytes: Synergistically Boosting High-Voltage Lithium Metal Batteries
In high-voltage lithium metal batteries, designing electrolytes with low salt concentrations to achieve stable electrode interfaces presents a formidable challenge. High-concentration electrolytes stabilize the interface through an anion-derived LiF-rich interphase; however, their anion-rich solvation structures compromise the ionic conductivity. This study introduces a polymer-derived interphase that maintains interface stability at low lithium salt concentrations (∼1 M). This strategy enables copolymer electrolytes to sustain the Li|Li cell for over 2500 h at 0.1 mA/cm2, even with a water content of 1000 ppm. Moreover, this research addresses the weak solvation effects in fluorinated polymer electrolytes by modulating the strongly solvating cyano groups, resulting in electrolytes with a high ionic conductivity of 4 × 10–5 S/cm at 30 °C. A 143.8 Wh/kg Li|LiNi0.8Co0.1Mn0.1O2 pouch cell, with a lean electrolyte ratio of 5 g/Ah and a low negative/positive capacity ratio of 4, maintains a capacity retention of 90.5% after 29 cycles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信