{"title":"流体驱动的纳米-微观-宏观结构变形实现智能多频谱兼容隐身","authors":"Xiuyue Yang, Leilei Liang, Chen Li, Baoshan Zhang, Yue Zhao, Shujuan Tan, Guangbin Ji","doi":"10.1021/acs.nanolett.4c05494","DOIUrl":null,"url":null,"abstract":"Modern detection technology has driven camouflage technology toward multispectral compatibility and dynamic regulation. However, developing such stealth technologies is challenging due to different frequency-band principles. Here, this work proposes a design concept for a fluid-actuated multispectral compatible smart stealth device that employs a deformable mechanochromic layer/elastomer with a channeled dielectric layer. After fluid actuation, the deformable elastomer layer transmits mechanical strain to the mechanochromic layer, thereby altering the visible reflectance wavelengths in [568, 699] nm. Concurrently, the pumped-in liquid reconfigures the spatial structure parameter to alter microwave resonance and diffraction for dynamic radar absorption, enabling dynamic radar absorption with significant broadband absorption at [8.16, 18.0] GHz. Using the heat-absorption property also achieves dynamic infrared stealth, shown by a Δ<i>T</i> ≈ 16.5 °C temperature difference. Additionally, the device exhibits a rapid response time (∼1 s), excellent cycling performance (100 cycles), and programmability (10 codes), offering a new stealth strategy.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"13 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fluid-Actuated Nano–Micro–Macro Structure Morphing Enables Smart Multispectrum Compatible Stealth\",\"authors\":\"Xiuyue Yang, Leilei Liang, Chen Li, Baoshan Zhang, Yue Zhao, Shujuan Tan, Guangbin Ji\",\"doi\":\"10.1021/acs.nanolett.4c05494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern detection technology has driven camouflage technology toward multispectral compatibility and dynamic regulation. However, developing such stealth technologies is challenging due to different frequency-band principles. Here, this work proposes a design concept for a fluid-actuated multispectral compatible smart stealth device that employs a deformable mechanochromic layer/elastomer with a channeled dielectric layer. After fluid actuation, the deformable elastomer layer transmits mechanical strain to the mechanochromic layer, thereby altering the visible reflectance wavelengths in [568, 699] nm. Concurrently, the pumped-in liquid reconfigures the spatial structure parameter to alter microwave resonance and diffraction for dynamic radar absorption, enabling dynamic radar absorption with significant broadband absorption at [8.16, 18.0] GHz. Using the heat-absorption property also achieves dynamic infrared stealth, shown by a Δ<i>T</i> ≈ 16.5 °C temperature difference. Additionally, the device exhibits a rapid response time (∼1 s), excellent cycling performance (100 cycles), and programmability (10 codes), offering a new stealth strategy.\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c05494\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c05494","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Modern detection technology has driven camouflage technology toward multispectral compatibility and dynamic regulation. However, developing such stealth technologies is challenging due to different frequency-band principles. Here, this work proposes a design concept for a fluid-actuated multispectral compatible smart stealth device that employs a deformable mechanochromic layer/elastomer with a channeled dielectric layer. After fluid actuation, the deformable elastomer layer transmits mechanical strain to the mechanochromic layer, thereby altering the visible reflectance wavelengths in [568, 699] nm. Concurrently, the pumped-in liquid reconfigures the spatial structure parameter to alter microwave resonance and diffraction for dynamic radar absorption, enabling dynamic radar absorption with significant broadband absorption at [8.16, 18.0] GHz. Using the heat-absorption property also achieves dynamic infrared stealth, shown by a ΔT ≈ 16.5 °C temperature difference. Additionally, the device exhibits a rapid response time (∼1 s), excellent cycling performance (100 cycles), and programmability (10 codes), offering a new stealth strategy.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.