IF 38.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Joule Pub Date : 2024-12-19 DOI:10.1016/j.joule.2024.11.012
Toby Wong, Yijie Yang, Rui Tan, Anqi Wang, Zhou Zhou, Zhizhang Yuan, Jiaxi Li, Dezhi Liu, Alberto Alvarez-Fernandez, Chunchun Ye, Mark Sankey, David Ainsworth, Stefan Guldin, Fabrizia Foglia, Neil B. McKeown, Kim E. Jelfs, Xianfeng Li, Qilei Song
{"title":"Sulfonated poly(ether-ether-ketone) membranes with intrinsic microporosity enable efficient redox flow batteries for energy storage","authors":"Toby Wong, Yijie Yang, Rui Tan, Anqi Wang, Zhou Zhou, Zhizhang Yuan, Jiaxi Li, Dezhi Liu, Alberto Alvarez-Fernandez, Chunchun Ye, Mark Sankey, David Ainsworth, Stefan Guldin, Fabrizia Foglia, Neil B. McKeown, Kim E. Jelfs, Xianfeng Li, Qilei Song","doi":"10.1016/j.joule.2024.11.012","DOIUrl":null,"url":null,"abstract":"Redox flow batteries (RFBs) are promising for long-duration grid-scale sustainable energy storage. The ion-exchange membrane is a key component that determines energy efficiency and cycling stability. However, it remains challenging to develop membranes with high ionic conductivity and high selectivity toward redox-active electrolytes. We report the development of ion-conductive polymer membranes with record-breaking energy efficiency. By incorporating triptycene into poly(ether-ether-ketone) and controlled sulfonation, the resulting intrinsically microporous polymer membranes form highly interconnected water channels that facilitate transport of charge-balancing ions, particularly hydroxide anions. These microporous membranes showed high ionic conductivity without compromising the selectivity toward redox-active species. The membranes enabled excellent performance in alkaline aqueous organic and zinc-iron flow batteries, demonstrating long-term stability, high power density, and an operational current density up to 700 mA cm<sup>−2</sup>. The membranes also improved performance in neutral pH aqueous RFBs with high capacity utilization and retention, enhanced energy efficiency, and boosted power density.","PeriodicalId":343,"journal":{"name":"Joule","volume":"10 1","pages":""},"PeriodicalIF":38.6000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.joule.2024.11.012","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

氧化还原液流电池(RFB)在长时间电网规模的可持续能源存储方面大有可为。离子交换膜是决定能量效率和循环稳定性的关键部件。然而,开发具有高离子传导性和对氧化还原活性电解质的高选择性的膜仍然具有挑战性。我们报告了具有破纪录能效的离子导电聚合物膜的开发情况。通过在聚(醚-酮)中加入三庚烯并进行可控磺化,由此产生的本征微孔聚合物膜形成了高度相互连接的水通道,可促进电荷平衡离子(尤其是氢氧根阴离子)的传输。这些微孔膜具有很高的离子传导性,同时不会影响对氧化还原活性物种的选择性。这些膜在碱性水溶液有机电池和锌-铁液流电池中表现出色,具有长期稳定性、高功率密度和高达 700 mA cm-2 的工作电流密度。这些膜还提高了中性 pH 水基 RFB 的性能,具有高容量利用率和保持率、更高的能效和更大的功率密度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Sulfonated poly(ether-ether-ketone) membranes with intrinsic microporosity enable efficient redox flow batteries for energy storage

Sulfonated poly(ether-ether-ketone) membranes with intrinsic microporosity enable efficient redox flow batteries for energy storage
Redox flow batteries (RFBs) are promising for long-duration grid-scale sustainable energy storage. The ion-exchange membrane is a key component that determines energy efficiency and cycling stability. However, it remains challenging to develop membranes with high ionic conductivity and high selectivity toward redox-active electrolytes. We report the development of ion-conductive polymer membranes with record-breaking energy efficiency. By incorporating triptycene into poly(ether-ether-ketone) and controlled sulfonation, the resulting intrinsically microporous polymer membranes form highly interconnected water channels that facilitate transport of charge-balancing ions, particularly hydroxide anions. These microporous membranes showed high ionic conductivity without compromising the selectivity toward redox-active species. The membranes enabled excellent performance in alkaline aqueous organic and zinc-iron flow batteries, demonstrating long-term stability, high power density, and an operational current density up to 700 mA cm−2. The membranes also improved performance in neutral pH aqueous RFBs with high capacity utilization and retention, enhanced energy efficiency, and boosted power density.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Joule
Joule Energy-General Energy
CiteScore
53.10
自引率
2.00%
发文量
198
期刊介绍: Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信