Toby Wong, Yijie Yang, Rui Tan, Anqi Wang, Zhou Zhou, Zhizhang Yuan, Jiaxi Li, Dezhi Liu, Alberto Alvarez-Fernandez, Chunchun Ye, Mark Sankey, David Ainsworth, Stefan Guldin, Fabrizia Foglia, Neil B. McKeown, Kim E. Jelfs, Xianfeng Li, Qilei Song
{"title":"Sulfonated poly(ether-ether-ketone) membranes with intrinsic microporosity enable efficient redox flow batteries for energy storage","authors":"Toby Wong, Yijie Yang, Rui Tan, Anqi Wang, Zhou Zhou, Zhizhang Yuan, Jiaxi Li, Dezhi Liu, Alberto Alvarez-Fernandez, Chunchun Ye, Mark Sankey, David Ainsworth, Stefan Guldin, Fabrizia Foglia, Neil B. McKeown, Kim E. Jelfs, Xianfeng Li, Qilei Song","doi":"10.1016/j.joule.2024.11.012","DOIUrl":null,"url":null,"abstract":"Redox flow batteries (RFBs) are promising for long-duration grid-scale sustainable energy storage. The ion-exchange membrane is a key component that determines energy efficiency and cycling stability. However, it remains challenging to develop membranes with high ionic conductivity and high selectivity toward redox-active electrolytes. We report the development of ion-conductive polymer membranes with record-breaking energy efficiency. By incorporating triptycene into poly(ether-ether-ketone) and controlled sulfonation, the resulting intrinsically microporous polymer membranes form highly interconnected water channels that facilitate transport of charge-balancing ions, particularly hydroxide anions. These microporous membranes showed high ionic conductivity without compromising the selectivity toward redox-active species. The membranes enabled excellent performance in alkaline aqueous organic and zinc-iron flow batteries, demonstrating long-term stability, high power density, and an operational current density up to 700 mA cm<sup>−2</sup>. The membranes also improved performance in neutral pH aqueous RFBs with high capacity utilization and retention, enhanced energy efficiency, and boosted power density.","PeriodicalId":343,"journal":{"name":"Joule","volume":"10 1","pages":""},"PeriodicalIF":38.6000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.joule.2024.11.012","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
氧化还原液流电池(RFB)在长时间电网规模的可持续能源存储方面大有可为。离子交换膜是决定能量效率和循环稳定性的关键部件。然而,开发具有高离子传导性和对氧化还原活性电解质的高选择性的膜仍然具有挑战性。我们报告了具有破纪录能效的离子导电聚合物膜的开发情况。通过在聚(醚-酮)中加入三庚烯并进行可控磺化,由此产生的本征微孔聚合物膜形成了高度相互连接的水通道,可促进电荷平衡离子(尤其是氢氧根阴离子)的传输。这些微孔膜具有很高的离子传导性,同时不会影响对氧化还原活性物种的选择性。这些膜在碱性水溶液有机电池和锌-铁液流电池中表现出色,具有长期稳定性、高功率密度和高达 700 mA cm-2 的工作电流密度。这些膜还提高了中性 pH 水基 RFB 的性能,具有高容量利用率和保持率、更高的能效和更大的功率密度。
Sulfonated poly(ether-ether-ketone) membranes with intrinsic microporosity enable efficient redox flow batteries for energy storage
Redox flow batteries (RFBs) are promising for long-duration grid-scale sustainable energy storage. The ion-exchange membrane is a key component that determines energy efficiency and cycling stability. However, it remains challenging to develop membranes with high ionic conductivity and high selectivity toward redox-active electrolytes. We report the development of ion-conductive polymer membranes with record-breaking energy efficiency. By incorporating triptycene into poly(ether-ether-ketone) and controlled sulfonation, the resulting intrinsically microporous polymer membranes form highly interconnected water channels that facilitate transport of charge-balancing ions, particularly hydroxide anions. These microporous membranes showed high ionic conductivity without compromising the selectivity toward redox-active species. The membranes enabled excellent performance in alkaline aqueous organic and zinc-iron flow batteries, demonstrating long-term stability, high power density, and an operational current density up to 700 mA cm−2. The membranes also improved performance in neutral pH aqueous RFBs with high capacity utilization and retention, enhanced energy efficiency, and boosted power density.
期刊介绍:
Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.