东北太平洋和北美西部冬季降水对CO2强迫的不可逆性

IF 8.5 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Zhenhao Xu, Yu Kosaka, Masaki Toda, Tomoki Iwakiri, Gang Huang, Fei Ji, Ayumu Miyamoto, Weichen Tao
{"title":"东北太平洋和北美西部冬季降水对CO2强迫的不可逆性","authors":"Zhenhao Xu, Yu Kosaka, Masaki Toda, Tomoki Iwakiri, Gang Huang, Fei Ji, Ayumu Miyamoto, Weichen Tao","doi":"10.1038/s41612-024-00864-2","DOIUrl":null,"url":null,"abstract":"Comprehending the resilience of regional hydroclimate in response to CO2 removal is essential for guiding future mitigation and adaptation strategies. Using an ensemble of model simulations forced by idealized CO2 ramp-up followed by ramp-down, here we show that the winter precipitation over the Northeastern Pacific and Western North America (NPWNA) is irreversible even if global warming is reversed back to 2 °C level. This asymmetric change features a tripolar pattern and is tied to Aleutian Low intensification, which is driven by both zonal and meridional gradients of sea surface temperature (SST) anomalies in the tropical central-eastern Pacific. Distinct from the zonal SST gradient—explained by different timescales of surface and subsurface warming and ocean dynamical processes, amplified through the Bjerknes feedback—the meridional SST gradient originates from the southward shift of the intertropical convergence zone, maintained by the wind-evaporation-SST feedback. Our findings suggest that the regional hydrological risks over the NPWNA induced by CO2 ramp-up cannot be fully eliminated by CO2 removal even if the global warming level is restored back.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":" ","pages":"1-11"},"PeriodicalIF":8.5000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00864-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Irreversibility of winter precipitation over the Northeastern Pacific and Western North America against CO2 forcing\",\"authors\":\"Zhenhao Xu, Yu Kosaka, Masaki Toda, Tomoki Iwakiri, Gang Huang, Fei Ji, Ayumu Miyamoto, Weichen Tao\",\"doi\":\"10.1038/s41612-024-00864-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Comprehending the resilience of regional hydroclimate in response to CO2 removal is essential for guiding future mitigation and adaptation strategies. Using an ensemble of model simulations forced by idealized CO2 ramp-up followed by ramp-down, here we show that the winter precipitation over the Northeastern Pacific and Western North America (NPWNA) is irreversible even if global warming is reversed back to 2 °C level. This asymmetric change features a tripolar pattern and is tied to Aleutian Low intensification, which is driven by both zonal and meridional gradients of sea surface temperature (SST) anomalies in the tropical central-eastern Pacific. Distinct from the zonal SST gradient—explained by different timescales of surface and subsurface warming and ocean dynamical processes, amplified through the Bjerknes feedback—the meridional SST gradient originates from the southward shift of the intertropical convergence zone, maintained by the wind-evaporation-SST feedback. Our findings suggest that the regional hydrological risks over the NPWNA induced by CO2 ramp-up cannot be fully eliminated by CO2 removal even if the global warming level is restored back.\",\"PeriodicalId\":19438,\"journal\":{\"name\":\"npj Climate and Atmospheric Science\",\"volume\":\" \",\"pages\":\"1-11\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41612-024-00864-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Climate and Atmospheric Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.nature.com/articles/s41612-024-00864-2\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41612-024-00864-2","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

了解区域水文气候对二氧化碳清除的复原力对于指导未来的缓解和适应战略至关重要。利用理想化的CO2上升后下降的模式模拟集合,我们表明,即使全球变暖逆转到2°C的水平,东北太平洋和北美西部(NPWNA)的冬季降水也是不可逆转的。这种不对称变化具有三极型特征,与阿留申低压强化有关,而阿留申低压强化是由热带中东部太平洋海温异常的纬向和经向梯度驱动的。与纬向海温梯度不同的是,经向海温梯度源于热带辐合带的南移,由风-蒸发-海温反馈维持。纬向海温梯度由不同时间尺度的地表增温和海洋动力过程解释,并通过Bjerknes反馈放大。我们的研究结果表明,即使全球变暖水平恢复,二氧化碳排放也不能完全消除NPWNA上由二氧化碳增加引起的区域水文风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Irreversibility of winter precipitation over the Northeastern Pacific and Western North America against CO2 forcing

Irreversibility of winter precipitation over the Northeastern Pacific and Western North America against CO2 forcing

Irreversibility of winter precipitation over the Northeastern Pacific and Western North America against CO2 forcing
Comprehending the resilience of regional hydroclimate in response to CO2 removal is essential for guiding future mitigation and adaptation strategies. Using an ensemble of model simulations forced by idealized CO2 ramp-up followed by ramp-down, here we show that the winter precipitation over the Northeastern Pacific and Western North America (NPWNA) is irreversible even if global warming is reversed back to 2 °C level. This asymmetric change features a tripolar pattern and is tied to Aleutian Low intensification, which is driven by both zonal and meridional gradients of sea surface temperature (SST) anomalies in the tropical central-eastern Pacific. Distinct from the zonal SST gradient—explained by different timescales of surface and subsurface warming and ocean dynamical processes, amplified through the Bjerknes feedback—the meridional SST gradient originates from the southward shift of the intertropical convergence zone, maintained by the wind-evaporation-SST feedback. Our findings suggest that the regional hydrological risks over the NPWNA induced by CO2 ramp-up cannot be fully eliminated by CO2 removal even if the global warming level is restored back.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Climate and Atmospheric Science
npj Climate and Atmospheric Science Earth and Planetary Sciences-Atmospheric Science
CiteScore
8.80
自引率
3.30%
发文量
87
审稿时长
21 weeks
期刊介绍: npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols. The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信