源自蔷薇肠的丁酸盐可减轻神经性疼痛

IF 20.6 1区 医学 Q1 MICROBIOLOGY
Yanjun Jiang, Ziheng Huang, Wuping Sun, Jiabin Huang, Yunlong Xu, Yuliang Liao, Tingting Jin, Qing Li, Idy Hiu Ting Ho, Yidan Zou, Wenyi Zhu, Qian Li, Fenfen Qin, Xinyi Zhang, Shuqi Shi, Na Zhang, Shaomin Yang, Wenhui Xie, Songbin Wu, Likai Tan, Xiaodong Liu
{"title":"源自蔷薇肠的丁酸盐可减轻神经性疼痛","authors":"Yanjun Jiang, Ziheng Huang, Wuping Sun, Jiabin Huang, Yunlong Xu, Yuliang Liao, Tingting Jin, Qing Li, Idy Hiu Ting Ho, Yidan Zou, Wenyi Zhu, Qian Li, Fenfen Qin, Xinyi Zhang, Shuqi Shi, Na Zhang, Shaomin Yang, Wenhui Xie, Songbin Wu, Likai Tan, Xiaodong Liu","doi":"10.1016/j.chom.2024.11.013","DOIUrl":null,"url":null,"abstract":"Approximately 20% of patients with shingles develop postherpetic neuralgia (PHN). We investigated the role of gut microbiota in shingle- and PHN-related pain. Patients with shingles or PHN exhibited significant alterations in their gut microbiota with microbial markers predicting PHN development among patients with shingles. Functionally, fecal microbiota transplantation from patients with PHN to mice heightened pain sensitivity. Administration of <em>Roseburia intestinalis</em>, a bacterium both depleted in patients with shingles and PHN, alleviated peripheral nerve injury-induced pain in mice. <em>R. intestinalis</em> enhanced vagal neurotransmission to the nucleus tractus solitarius (NTS) to suppress the central amygdala (CeA), a brain region involved in pain perception. <em>R. intestinalis-</em>generated butyrate activated vagal neurons through the receptor, G protein-coupled receptor 41 (GPR41). Vagal knockout of <em>Gpr41</em> abolished the effects of <em>R. intestinalis</em> on the NTS-CeA circuit and reduced pain behaviors. Overall, we established a microbiota-based model for PHN risk assessment and identified <em>R. intestinalis</em> as a potential pain-alleviating probiotic.","PeriodicalId":9693,"journal":{"name":"Cell host & microbe","volume":"40 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Roseburia intestinalis-derived butyrate alleviates neuropathic pain\",\"authors\":\"Yanjun Jiang, Ziheng Huang, Wuping Sun, Jiabin Huang, Yunlong Xu, Yuliang Liao, Tingting Jin, Qing Li, Idy Hiu Ting Ho, Yidan Zou, Wenyi Zhu, Qian Li, Fenfen Qin, Xinyi Zhang, Shuqi Shi, Na Zhang, Shaomin Yang, Wenhui Xie, Songbin Wu, Likai Tan, Xiaodong Liu\",\"doi\":\"10.1016/j.chom.2024.11.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Approximately 20% of patients with shingles develop postherpetic neuralgia (PHN). We investigated the role of gut microbiota in shingle- and PHN-related pain. Patients with shingles or PHN exhibited significant alterations in their gut microbiota with microbial markers predicting PHN development among patients with shingles. Functionally, fecal microbiota transplantation from patients with PHN to mice heightened pain sensitivity. Administration of <em>Roseburia intestinalis</em>, a bacterium both depleted in patients with shingles and PHN, alleviated peripheral nerve injury-induced pain in mice. <em>R. intestinalis</em> enhanced vagal neurotransmission to the nucleus tractus solitarius (NTS) to suppress the central amygdala (CeA), a brain region involved in pain perception. <em>R. intestinalis-</em>generated butyrate activated vagal neurons through the receptor, G protein-coupled receptor 41 (GPR41). Vagal knockout of <em>Gpr41</em> abolished the effects of <em>R. intestinalis</em> on the NTS-CeA circuit and reduced pain behaviors. Overall, we established a microbiota-based model for PHN risk assessment and identified <em>R. intestinalis</em> as a potential pain-alleviating probiotic.\",\"PeriodicalId\":9693,\"journal\":{\"name\":\"Cell host & microbe\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":20.6000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell host & microbe\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.chom.2024.11.013\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell host & microbe","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.chom.2024.11.013","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Roseburia intestinalis-derived butyrate alleviates neuropathic pain
Approximately 20% of patients with shingles develop postherpetic neuralgia (PHN). We investigated the role of gut microbiota in shingle- and PHN-related pain. Patients with shingles or PHN exhibited significant alterations in their gut microbiota with microbial markers predicting PHN development among patients with shingles. Functionally, fecal microbiota transplantation from patients with PHN to mice heightened pain sensitivity. Administration of Roseburia intestinalis, a bacterium both depleted in patients with shingles and PHN, alleviated peripheral nerve injury-induced pain in mice. R. intestinalis enhanced vagal neurotransmission to the nucleus tractus solitarius (NTS) to suppress the central amygdala (CeA), a brain region involved in pain perception. R. intestinalis-generated butyrate activated vagal neurons through the receptor, G protein-coupled receptor 41 (GPR41). Vagal knockout of Gpr41 abolished the effects of R. intestinalis on the NTS-CeA circuit and reduced pain behaviors. Overall, we established a microbiota-based model for PHN risk assessment and identified R. intestinalis as a potential pain-alleviating probiotic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell host & microbe
Cell host & microbe 生物-微生物学
CiteScore
45.10
自引率
1.70%
发文量
201
审稿时长
4-8 weeks
期刊介绍: Cell Host & Microbe is a scientific journal that was launched in March 2007. The journal aims to provide a platform for scientists to exchange ideas and concepts related to the study of microbes and their interaction with host organisms at a molecular, cellular, and immune level. It publishes novel findings on a wide range of microorganisms including bacteria, fungi, parasites, and viruses. The journal focuses on the interface between the microbe and its host, whether the host is a vertebrate, invertebrate, or plant, and whether the microbe is pathogenic, non-pathogenic, or commensal. The integrated study of microbes and their interactions with each other, their host, and the cellular environment they inhabit is a unifying theme of the journal. The published work in Cell Host & Microbe is expected to be of exceptional significance within its field and also of interest to researchers in other areas. In addition to primary research articles, the journal features expert analysis, commentary, and reviews on current topics of interest in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信