Kristina Grenz, Khong-Sam Chia, Emma K. Turley, Alexa S. Tyszka, Rebecca E. Atkinson, Jacob Reeves, Martin Vickers, Martin Rejzek, Joseph F. Walker, Philip Carella
{"title":"一种坏死毒素可使假单胞菌感染不同进化植物","authors":"Kristina Grenz, Khong-Sam Chia, Emma K. Turley, Alexa S. Tyszka, Rebecca E. Atkinson, Jacob Reeves, Martin Vickers, Martin Rejzek, Joseph F. Walker, Philip Carella","doi":"10.1016/j.chom.2024.11.014","DOIUrl":null,"url":null,"abstract":"The <em>Pseudomonas syringae</em> species complex harbors a diverse range of pathogenic bacteria that can infect hosts across the plant kingdom. However, much of our current understanding of <em>P. syringae</em> is centered on its infection of flowering plants. We took a comparative approach to understand how <em>P. syringae</em> infects evolutionarily divergent plants. We identified <em>P. syringae</em> isolates causing disease in the liverwort <em>Marchantia polymorpha</em>, the fern <em>Ceratopteris richardii</em>, and the flowering plant <em>Nicotiana benthamiana</em>, which last shared a common ancestor >500 million years ago. Phytotoxin-enriched phylogroup (PG) 2 isolates of <em>P. syringae</em> are virulent in non-flowering plants, relying on type-3 effectors and the lipopeptide phytotoxin syringomycin. Ectopic syringomycin promotes tissue necrosis, activates conserved stress-related genes, and enhances <em>in planta</em> bacterial growth of toxin-deficient PGs in <em>Marchantia</em>. Collectively, our research reveals a key role for syringomycin in promoting <em>Pseudomonas</em> colonization, which works alongside effectors to antagonize an exceptionally wide spectrum of land plants.","PeriodicalId":9693,"journal":{"name":"Cell host & microbe","volume":"262 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A necrotizing toxin enables Pseudomonas syringae infection across evolutionarily divergent plants\",\"authors\":\"Kristina Grenz, Khong-Sam Chia, Emma K. Turley, Alexa S. Tyszka, Rebecca E. Atkinson, Jacob Reeves, Martin Vickers, Martin Rejzek, Joseph F. Walker, Philip Carella\",\"doi\":\"10.1016/j.chom.2024.11.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The <em>Pseudomonas syringae</em> species complex harbors a diverse range of pathogenic bacteria that can infect hosts across the plant kingdom. However, much of our current understanding of <em>P. syringae</em> is centered on its infection of flowering plants. We took a comparative approach to understand how <em>P. syringae</em> infects evolutionarily divergent plants. We identified <em>P. syringae</em> isolates causing disease in the liverwort <em>Marchantia polymorpha</em>, the fern <em>Ceratopteris richardii</em>, and the flowering plant <em>Nicotiana benthamiana</em>, which last shared a common ancestor >500 million years ago. Phytotoxin-enriched phylogroup (PG) 2 isolates of <em>P. syringae</em> are virulent in non-flowering plants, relying on type-3 effectors and the lipopeptide phytotoxin syringomycin. Ectopic syringomycin promotes tissue necrosis, activates conserved stress-related genes, and enhances <em>in planta</em> bacterial growth of toxin-deficient PGs in <em>Marchantia</em>. Collectively, our research reveals a key role for syringomycin in promoting <em>Pseudomonas</em> colonization, which works alongside effectors to antagonize an exceptionally wide spectrum of land plants.\",\"PeriodicalId\":9693,\"journal\":{\"name\":\"Cell host & microbe\",\"volume\":\"262 1\",\"pages\":\"\"},\"PeriodicalIF\":20.6000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell host & microbe\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.chom.2024.11.014\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell host & microbe","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.chom.2024.11.014","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
A necrotizing toxin enables Pseudomonas syringae infection across evolutionarily divergent plants
The Pseudomonas syringae species complex harbors a diverse range of pathogenic bacteria that can infect hosts across the plant kingdom. However, much of our current understanding of P. syringae is centered on its infection of flowering plants. We took a comparative approach to understand how P. syringae infects evolutionarily divergent plants. We identified P. syringae isolates causing disease in the liverwort Marchantia polymorpha, the fern Ceratopteris richardii, and the flowering plant Nicotiana benthamiana, which last shared a common ancestor >500 million years ago. Phytotoxin-enriched phylogroup (PG) 2 isolates of P. syringae are virulent in non-flowering plants, relying on type-3 effectors and the lipopeptide phytotoxin syringomycin. Ectopic syringomycin promotes tissue necrosis, activates conserved stress-related genes, and enhances in planta bacterial growth of toxin-deficient PGs in Marchantia. Collectively, our research reveals a key role for syringomycin in promoting Pseudomonas colonization, which works alongside effectors to antagonize an exceptionally wide spectrum of land plants.
期刊介绍:
Cell Host & Microbe is a scientific journal that was launched in March 2007. The journal aims to provide a platform for scientists to exchange ideas and concepts related to the study of microbes and their interaction with host organisms at a molecular, cellular, and immune level. It publishes novel findings on a wide range of microorganisms including bacteria, fungi, parasites, and viruses. The journal focuses on the interface between the microbe and its host, whether the host is a vertebrate, invertebrate, or plant, and whether the microbe is pathogenic, non-pathogenic, or commensal. The integrated study of microbes and their interactions with each other, their host, and the cellular environment they inhabit is a unifying theme of the journal. The published work in Cell Host & Microbe is expected to be of exceptional significance within its field and also of interest to researchers in other areas. In addition to primary research articles, the journal features expert analysis, commentary, and reviews on current topics of interest in the field.