气候变化的赢家和输家:美国毗连地区约 150 种树木生长和存活的气候阈值分析

IF 10.8 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION
Christopher M. Clark, Justin G. Coughlin, Jennifer Phelan, Gray Martin, Kemen Austin, Marwa Salem, Robert D. Sabo, Kevin Horn, R. Quinn Thomas, Rebecca M. Dalton
{"title":"气候变化的赢家和输家:美国毗连地区约 150 种树木生长和存活的气候阈值分析","authors":"Christopher M. Clark,&nbsp;Justin G. Coughlin,&nbsp;Jennifer Phelan,&nbsp;Gray Martin,&nbsp;Kemen Austin,&nbsp;Marwa Salem,&nbsp;Robert D. Sabo,&nbsp;Kevin Horn,&nbsp;R. Quinn Thomas,&nbsp;Rebecca M. Dalton","doi":"10.1111/gcb.17597","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Changes in temperature and precipitation are already influencing US forests and that will continue in the future even as we mitigate climate change. Using spatiotemporally matched data for mean annual temperature (MAT) and mean annual precipitation (MAP), we used simulated annealing to estimate critical thresholds for changes in the growth and survival of roughly 150 tree species (153 spp. for growth, 159 spp. for survival) across the conterminous United States (CONUS). We found that growth of nearly one-third of tree species assessed (44 spp.) decreased with any increase in MAT (42–49 species), whereas fewer responded negatively to projected regional trends in MAP (&lt; 20 species each in the east and west). Hypothetical increases in temperature (+1°C, +2°C) increased average annual growth in the Central East and Pacific Northwest and decreased growth over large areas of the Rockies and Southeast, while decadal survival generally decreased with temperature. Average annual growth and decadal survival had unfavorable associations with projected precipitation, generally decreasing with wetter conditions (+25%) in the east and decreasing with drier conditions (−25%) in the west. Beyond these averages, there were species that positively and negatively responded nearly everywhere across the CONUS, suggesting changes in forest composition are underway. We identified only eight species out of ~150 assessed that were tolerant to increases in temperature, and 24 species in the east and seven in the west were tolerant to regionally specific trends in precipitation (increases in the east and decreases in the west). We assessed confidence on a 5-point scale (1–5) for five aspects of uncertainty. Average confidence scores were generally high, though some species and metrics had low confidence scores especially for survival. These findings have significant implications for the future national forest carbon sink and for conservation efforts in the face of climate change.</p>\n </div>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"30 12","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Winners and Losers From Climate Change: An Analysis of Climate Thresholds for Tree Growth and Survival for Roughly 150 Species Across the Contiguous United States\",\"authors\":\"Christopher M. Clark,&nbsp;Justin G. Coughlin,&nbsp;Jennifer Phelan,&nbsp;Gray Martin,&nbsp;Kemen Austin,&nbsp;Marwa Salem,&nbsp;Robert D. Sabo,&nbsp;Kevin Horn,&nbsp;R. Quinn Thomas,&nbsp;Rebecca M. Dalton\",\"doi\":\"10.1111/gcb.17597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Changes in temperature and precipitation are already influencing US forests and that will continue in the future even as we mitigate climate change. Using spatiotemporally matched data for mean annual temperature (MAT) and mean annual precipitation (MAP), we used simulated annealing to estimate critical thresholds for changes in the growth and survival of roughly 150 tree species (153 spp. for growth, 159 spp. for survival) across the conterminous United States (CONUS). We found that growth of nearly one-third of tree species assessed (44 spp.) decreased with any increase in MAT (42–49 species), whereas fewer responded negatively to projected regional trends in MAP (&lt; 20 species each in the east and west). Hypothetical increases in temperature (+1°C, +2°C) increased average annual growth in the Central East and Pacific Northwest and decreased growth over large areas of the Rockies and Southeast, while decadal survival generally decreased with temperature. Average annual growth and decadal survival had unfavorable associations with projected precipitation, generally decreasing with wetter conditions (+25%) in the east and decreasing with drier conditions (−25%) in the west. Beyond these averages, there were species that positively and negatively responded nearly everywhere across the CONUS, suggesting changes in forest composition are underway. We identified only eight species out of ~150 assessed that were tolerant to increases in temperature, and 24 species in the east and seven in the west were tolerant to regionally specific trends in precipitation (increases in the east and decreases in the west). We assessed confidence on a 5-point scale (1–5) for five aspects of uncertainty. Average confidence scores were generally high, though some species and metrics had low confidence scores especially for survival. These findings have significant implications for the future national forest carbon sink and for conservation efforts in the face of climate change.</p>\\n </div>\",\"PeriodicalId\":175,\"journal\":{\"name\":\"Global Change Biology\",\"volume\":\"30 12\",\"pages\":\"\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Change Biology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gcb.17597\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcb.17597","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Winners and Losers From Climate Change: An Analysis of Climate Thresholds for Tree Growth and Survival for Roughly 150 Species Across the Contiguous United States

Winners and Losers From Climate Change: An Analysis of Climate Thresholds for Tree Growth and Survival for Roughly 150 Species Across the Contiguous United States

Changes in temperature and precipitation are already influencing US forests and that will continue in the future even as we mitigate climate change. Using spatiotemporally matched data for mean annual temperature (MAT) and mean annual precipitation (MAP), we used simulated annealing to estimate critical thresholds for changes in the growth and survival of roughly 150 tree species (153 spp. for growth, 159 spp. for survival) across the conterminous United States (CONUS). We found that growth of nearly one-third of tree species assessed (44 spp.) decreased with any increase in MAT (42–49 species), whereas fewer responded negatively to projected regional trends in MAP (< 20 species each in the east and west). Hypothetical increases in temperature (+1°C, +2°C) increased average annual growth in the Central East and Pacific Northwest and decreased growth over large areas of the Rockies and Southeast, while decadal survival generally decreased with temperature. Average annual growth and decadal survival had unfavorable associations with projected precipitation, generally decreasing with wetter conditions (+25%) in the east and decreasing with drier conditions (−25%) in the west. Beyond these averages, there were species that positively and negatively responded nearly everywhere across the CONUS, suggesting changes in forest composition are underway. We identified only eight species out of ~150 assessed that were tolerant to increases in temperature, and 24 species in the east and seven in the west were tolerant to regionally specific trends in precipitation (increases in the east and decreases in the west). We assessed confidence on a 5-point scale (1–5) for five aspects of uncertainty. Average confidence scores were generally high, though some species and metrics had low confidence scores especially for survival. These findings have significant implications for the future national forest carbon sink and for conservation efforts in the face of climate change.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Global Change Biology
Global Change Biology 环境科学-环境科学
CiteScore
21.50
自引率
5.20%
发文量
497
审稿时长
3.3 months
期刊介绍: Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health. Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信