{"title":"用于具有超高探测率的量子点光电探测器的雪崩倍增技术","authors":"","doi":"10.1038/s41565-024-01832-w","DOIUrl":null,"url":null,"abstract":"Multiple exciton generation can increase the detectivity in photodetectors but has limited effect in infrared detectors. Now, a strategy for kinetically pumped avalanche multiplication has been demonstrated in colloidal quantum dot-based infrared photodetectors, achieving an 85-fold multiplication gain and ultrahigh detectivity of 1.4 × 1014 Jones.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"20 1","pages":""},"PeriodicalIF":38.1000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Avalanche multiplication for quantum dot photodetectors with ultrahigh detectivity\",\"authors\":\"\",\"doi\":\"10.1038/s41565-024-01832-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiple exciton generation can increase the detectivity in photodetectors but has limited effect in infrared detectors. Now, a strategy for kinetically pumped avalanche multiplication has been demonstrated in colloidal quantum dot-based infrared photodetectors, achieving an 85-fold multiplication gain and ultrahigh detectivity of 1.4 × 1014 Jones.\",\"PeriodicalId\":18915,\"journal\":{\"name\":\"Nature nanotechnology\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":38.1000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41565-024-01832-w\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41565-024-01832-w","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Avalanche multiplication for quantum dot photodetectors with ultrahigh detectivity
Multiple exciton generation can increase the detectivity in photodetectors but has limited effect in infrared detectors. Now, a strategy for kinetically pumped avalanche multiplication has been demonstrated in colloidal quantum dot-based infrared photodetectors, achieving an 85-fold multiplication gain and ultrahigh detectivity of 1.4 × 1014 Jones.
期刊介绍:
Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations.
Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.