{"title":"石胆酸表征了卡路里限制的抗衰老作用","authors":"Qi Qu, Yan Chen, Yu Wang, Shating Long, Weiche Wang, Heng-Ye Yang, Mengqi Li, Xiao Tian, Xiaoyan Wei, Yan-Hui Liu, Shengrong Xu, Cixiong Zhang, Mingxia Zhu, Sin Man Lam, Jianfeng Wu, Chuyu Yun, Junjie Chen, Shengye Xue, Baoding Zhang, Zhong-Zheng Zheng, Hai-Long Piao, Changtao Jiang, Hao Guo, Guanghou Shui, Xianming Deng, Chen-Song Zhang, Sheng-Cai Lin","doi":"10.1038/s41586-024-08329-5","DOIUrl":null,"url":null,"abstract":"<p>Calorie restriction (CR) is a dietary intervention used to promote health and longevity<sup>1,2</sup>. CR causes various metabolic changes in both the production and the circulation of metabolites<sup>1</sup>; however, it remains unclear which altered metabolites account for the physiological benefits of CR. Here we use metabolomics to analyse metabolites that exhibit changes in abundance during CR and perform subsequent functional validation. We show that lithocholic acid (LCA) is one of the metabolites that alone can recapitulate the effects of CR in mice. These effects include activation of AMP-activated protein kinase (AMPK), enhancement of muscle regeneration and rejuvenation of grip strength and running capacity. LCA also activates AMPK and induces life-extending and health-extending effects in <i>Caenorhabditis elegans</i> and <i>Drosophila melanogaster</i>. As <i>C.</i> <i>elegans</i> and <i>D.</i> <i>melanogaster</i> are not able to synthesize LCA, these results indicate that these animals are able to transmit the signalling effects of LCA once administered. Knockout of AMPK abrogates LCA-induced phenotypes in all the three animal models. Together, we identify that administration of the CR-mediated upregulated metabolite LCA alone can confer anti-ageing benefits to metazoans in an AMPK-dependent manner.</p>","PeriodicalId":18787,"journal":{"name":"Nature","volume":"88 1","pages":""},"PeriodicalIF":50.5000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lithocholic acid phenocopies anti-ageing effects of calorie restriction\",\"authors\":\"Qi Qu, Yan Chen, Yu Wang, Shating Long, Weiche Wang, Heng-Ye Yang, Mengqi Li, Xiao Tian, Xiaoyan Wei, Yan-Hui Liu, Shengrong Xu, Cixiong Zhang, Mingxia Zhu, Sin Man Lam, Jianfeng Wu, Chuyu Yun, Junjie Chen, Shengye Xue, Baoding Zhang, Zhong-Zheng Zheng, Hai-Long Piao, Changtao Jiang, Hao Guo, Guanghou Shui, Xianming Deng, Chen-Song Zhang, Sheng-Cai Lin\",\"doi\":\"10.1038/s41586-024-08329-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Calorie restriction (CR) is a dietary intervention used to promote health and longevity<sup>1,2</sup>. CR causes various metabolic changes in both the production and the circulation of metabolites<sup>1</sup>; however, it remains unclear which altered metabolites account for the physiological benefits of CR. Here we use metabolomics to analyse metabolites that exhibit changes in abundance during CR and perform subsequent functional validation. We show that lithocholic acid (LCA) is one of the metabolites that alone can recapitulate the effects of CR in mice. These effects include activation of AMP-activated protein kinase (AMPK), enhancement of muscle regeneration and rejuvenation of grip strength and running capacity. LCA also activates AMPK and induces life-extending and health-extending effects in <i>Caenorhabditis elegans</i> and <i>Drosophila melanogaster</i>. As <i>C.</i> <i>elegans</i> and <i>D.</i> <i>melanogaster</i> are not able to synthesize LCA, these results indicate that these animals are able to transmit the signalling effects of LCA once administered. Knockout of AMPK abrogates LCA-induced phenotypes in all the three animal models. Together, we identify that administration of the CR-mediated upregulated metabolite LCA alone can confer anti-ageing benefits to metazoans in an AMPK-dependent manner.</p>\",\"PeriodicalId\":18787,\"journal\":{\"name\":\"Nature\",\"volume\":\"88 1\",\"pages\":\"\"},\"PeriodicalIF\":50.5000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41586-024-08329-5\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41586-024-08329-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Lithocholic acid phenocopies anti-ageing effects of calorie restriction
Calorie restriction (CR) is a dietary intervention used to promote health and longevity1,2. CR causes various metabolic changes in both the production and the circulation of metabolites1; however, it remains unclear which altered metabolites account for the physiological benefits of CR. Here we use metabolomics to analyse metabolites that exhibit changes in abundance during CR and perform subsequent functional validation. We show that lithocholic acid (LCA) is one of the metabolites that alone can recapitulate the effects of CR in mice. These effects include activation of AMP-activated protein kinase (AMPK), enhancement of muscle regeneration and rejuvenation of grip strength and running capacity. LCA also activates AMPK and induces life-extending and health-extending effects in Caenorhabditis elegans and Drosophila melanogaster. As C.elegans and D.melanogaster are not able to synthesize LCA, these results indicate that these animals are able to transmit the signalling effects of LCA once administered. Knockout of AMPK abrogates LCA-induced phenotypes in all the three animal models. Together, we identify that administration of the CR-mediated upregulated metabolite LCA alone can confer anti-ageing benefits to metazoans in an AMPK-dependent manner.
期刊介绍:
Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.