纳米级矢量电场和磁场测量

IF 6.5 1区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jörg S. Eismann, Peter Banzer
{"title":"纳米级矢量电场和磁场测量","authors":"Jörg S. Eismann, Peter Banzer","doi":"10.1021/acsphotonics.4c01831","DOIUrl":null,"url":null,"abstract":"In technology, old or new, from basic imaging through a camera lens to advanced applications such as fluorescence microscopy and optical lithography, there are countless examples that would be inconceivable without the utilization of focused light. As technology evolves, the demands on spatially confined light fields grow but so do the challenges of accurately characterizing these complex fields. This study introduces a technique to measure the full vectorial nature of light, reaching sub/wavelength spatial resolution while capturing the 3D amplitude and phase for both electric and magnetic fields. This is achieved based on a polarization-resolved far-field analysis of light scattered by a single spherical nanoparticle acting as a local probe. For experimental verification, the method is applied to tightly focused light fields under various input scenarios. Offering high resolution, precision, and flexibility, this technique shows great promise for both fundamental research and applications in technologies relying on highly localized light fields.","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"23 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanoscale Vectorial Electric and Magnetic Field Measurement\",\"authors\":\"Jörg S. Eismann, Peter Banzer\",\"doi\":\"10.1021/acsphotonics.4c01831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In technology, old or new, from basic imaging through a camera lens to advanced applications such as fluorescence microscopy and optical lithography, there are countless examples that would be inconceivable without the utilization of focused light. As technology evolves, the demands on spatially confined light fields grow but so do the challenges of accurately characterizing these complex fields. This study introduces a technique to measure the full vectorial nature of light, reaching sub/wavelength spatial resolution while capturing the 3D amplitude and phase for both electric and magnetic fields. This is achieved based on a polarization-resolved far-field analysis of light scattered by a single spherical nanoparticle acting as a local probe. For experimental verification, the method is applied to tightly focused light fields under various input scenarios. Offering high resolution, precision, and flexibility, this technique shows great promise for both fundamental research and applications in technologies relying on highly localized light fields.\",\"PeriodicalId\":23,\"journal\":{\"name\":\"ACS Photonics\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1021/acsphotonics.4c01831\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1021/acsphotonics.4c01831","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nanoscale Vectorial Electric and Magnetic Field Measurement

Nanoscale Vectorial Electric and Magnetic Field Measurement
In technology, old or new, from basic imaging through a camera lens to advanced applications such as fluorescence microscopy and optical lithography, there are countless examples that would be inconceivable without the utilization of focused light. As technology evolves, the demands on spatially confined light fields grow but so do the challenges of accurately characterizing these complex fields. This study introduces a technique to measure the full vectorial nature of light, reaching sub/wavelength spatial resolution while capturing the 3D amplitude and phase for both electric and magnetic fields. This is achieved based on a polarization-resolved far-field analysis of light scattered by a single spherical nanoparticle acting as a local probe. For experimental verification, the method is applied to tightly focused light fields under various input scenarios. Offering high resolution, precision, and flexibility, this technique shows great promise for both fundamental research and applications in technologies relying on highly localized light fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Photonics
ACS Photonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.90
自引率
5.70%
发文量
438
审稿时长
2.3 months
期刊介绍: Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信