{"title":"通过调整适当的电抛光参数实现镁合金 AZ31 的高质量表面","authors":"Jessica Kloiber, Viktoria Anetsberger, Ulrich Schultheiß, Helga Hornberger","doi":"10.1016/j.electacta.2024.145547","DOIUrl":null,"url":null,"abstract":"Magnesium alloy AZ31 is a light material with a good mechanical stability and is used in various engineering applications. Although its tendency to localized corrosion is a limiting factor in its use. Electropolishing is a widely used process for improving the surface roughness and corrosion behavior of metals. However, there is a lack of knowledge about the electropolishing of magnesium and its alloys. In this study, an optimal electropolishing process for AZ31 was developed to improve the surface properties by varying the electrolyte concentration and the applied potential. The electrolyte composition was a mixture of phosphoric acid, ethanol and deionized water. The applied potentials were selected based on measured current density potential curves. Thereby, electropolishing was performed up to an electric charge of 18 As. The experimental results indicate that the electropolishing process should be carried out at a low current density to avoid bubble evolution and surface defects. Therefore, the concentration of the electropolishing electrolyte should have an appropriate low conductivity, and the applied potential should be in the transient or passive region of the polarization curve recorded prior to electropolishing. It could be shown that an optimized electropolishing process improved the surface of AZ31 by providing a bright and mirror-like surface and a lower roughness compared to a mechanically ground surface.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"13 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High quality surfaces of magnesium alloy AZ31 by adjusting appropriate electropolishing parameters\",\"authors\":\"Jessica Kloiber, Viktoria Anetsberger, Ulrich Schultheiß, Helga Hornberger\",\"doi\":\"10.1016/j.electacta.2024.145547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnesium alloy AZ31 is a light material with a good mechanical stability and is used in various engineering applications. Although its tendency to localized corrosion is a limiting factor in its use. Electropolishing is a widely used process for improving the surface roughness and corrosion behavior of metals. However, there is a lack of knowledge about the electropolishing of magnesium and its alloys. In this study, an optimal electropolishing process for AZ31 was developed to improve the surface properties by varying the electrolyte concentration and the applied potential. The electrolyte composition was a mixture of phosphoric acid, ethanol and deionized water. The applied potentials were selected based on measured current density potential curves. Thereby, electropolishing was performed up to an electric charge of 18 As. The experimental results indicate that the electropolishing process should be carried out at a low current density to avoid bubble evolution and surface defects. Therefore, the concentration of the electropolishing electrolyte should have an appropriate low conductivity, and the applied potential should be in the transient or passive region of the polarization curve recorded prior to electropolishing. It could be shown that an optimized electropolishing process improved the surface of AZ31 by providing a bright and mirror-like surface and a lower roughness compared to a mechanically ground surface.\",\"PeriodicalId\":305,\"journal\":{\"name\":\"Electrochimica Acta\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochimica Acta\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.electacta.2024.145547\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.electacta.2024.145547","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
High quality surfaces of magnesium alloy AZ31 by adjusting appropriate electropolishing parameters
Magnesium alloy AZ31 is a light material with a good mechanical stability and is used in various engineering applications. Although its tendency to localized corrosion is a limiting factor in its use. Electropolishing is a widely used process for improving the surface roughness and corrosion behavior of metals. However, there is a lack of knowledge about the electropolishing of magnesium and its alloys. In this study, an optimal electropolishing process for AZ31 was developed to improve the surface properties by varying the electrolyte concentration and the applied potential. The electrolyte composition was a mixture of phosphoric acid, ethanol and deionized water. The applied potentials were selected based on measured current density potential curves. Thereby, electropolishing was performed up to an electric charge of 18 As. The experimental results indicate that the electropolishing process should be carried out at a low current density to avoid bubble evolution and surface defects. Therefore, the concentration of the electropolishing electrolyte should have an appropriate low conductivity, and the applied potential should be in the transient or passive region of the polarization curve recorded prior to electropolishing. It could be shown that an optimized electropolishing process improved the surface of AZ31 by providing a bright and mirror-like surface and a lower roughness compared to a mechanically ground surface.
期刊介绍:
Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.