{"title":"揭示藻类有机物和细胞在处理含铜绿微囊藻水过程中对膜堵塞机理的相互作用","authors":"Zimin Wang, Shi Zhang, lili Li, Xiaomiao Zang, Rabail Zulekha, Haiyang Zhang, Xuezhi Zhang","doi":"10.1016/j.seppur.2024.131108","DOIUrl":null,"url":null,"abstract":"Membrane technology is widely used for algal bloom treatment due to its effective separation capabilities. However, the effect of algal cell interaction with AOM on the membrane fouling mechanism remains unclear. This study systematically investigated the filtration characteristics of algal cells and AOM, individually and in combination. The mechanism of membrane fouling was explored through the distribution of organic components, algal cake structure, interfacial free energy, and changes in the functional groups in cross-fouling. The mitigation effects of pretreatment additives, including diatomite, powdered activated carbon (PAC), and plant cotton, on interaction fouling were evaluated. The results revealed that the interaction between algal cells and AOM had a synergistic effect, significantly increasing membrane resistance. The presence of algal cells facilitated the transformation of some irreversible fouling into reversible fouling. Compared with cells, AOM exhibited higher adhesion-free energy with the membrane, with higher AOM concentrations notably elevating both <em>Ri</em> and <em>Rir</em>. Confocal laser scanning microscopy (CLSM), scanning electron microscope, and atomic force microscope (AFM) observations revealed that protein volume fractions increased with cake layer thickness during cross-fouling, while polysaccharides preferentially deposited on the membrane surface. Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analyses further indicated that polysaccharides are critical in membrane fouling, while proteins were more likely to cause reversible fouling within the cake layer. Notably, diatomite significantly reduced the interaction fouling coefficient by optimizing the cake layer structure. These findings provide valuable insights for controlling membrane fouling based on the characteristics of cells and AOM.","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"31 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling the interaction of algogenic organic matter and cells on membrane fouling mechanism during treatment of Microcystis aeruginosa-laden water\",\"authors\":\"Zimin Wang, Shi Zhang, lili Li, Xiaomiao Zang, Rabail Zulekha, Haiyang Zhang, Xuezhi Zhang\",\"doi\":\"10.1016/j.seppur.2024.131108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Membrane technology is widely used for algal bloom treatment due to its effective separation capabilities. However, the effect of algal cell interaction with AOM on the membrane fouling mechanism remains unclear. This study systematically investigated the filtration characteristics of algal cells and AOM, individually and in combination. The mechanism of membrane fouling was explored through the distribution of organic components, algal cake structure, interfacial free energy, and changes in the functional groups in cross-fouling. The mitigation effects of pretreatment additives, including diatomite, powdered activated carbon (PAC), and plant cotton, on interaction fouling were evaluated. The results revealed that the interaction between algal cells and AOM had a synergistic effect, significantly increasing membrane resistance. The presence of algal cells facilitated the transformation of some irreversible fouling into reversible fouling. Compared with cells, AOM exhibited higher adhesion-free energy with the membrane, with higher AOM concentrations notably elevating both <em>Ri</em> and <em>Rir</em>. Confocal laser scanning microscopy (CLSM), scanning electron microscope, and atomic force microscope (AFM) observations revealed that protein volume fractions increased with cake layer thickness during cross-fouling, while polysaccharides preferentially deposited on the membrane surface. Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analyses further indicated that polysaccharides are critical in membrane fouling, while proteins were more likely to cause reversible fouling within the cake layer. Notably, diatomite significantly reduced the interaction fouling coefficient by optimizing the cake layer structure. These findings provide valuable insights for controlling membrane fouling based on the characteristics of cells and AOM.\",\"PeriodicalId\":427,\"journal\":{\"name\":\"Separation and Purification Technology\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Separation and Purification Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.seppur.2024.131108\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.seppur.2024.131108","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Unraveling the interaction of algogenic organic matter and cells on membrane fouling mechanism during treatment of Microcystis aeruginosa-laden water
Membrane technology is widely used for algal bloom treatment due to its effective separation capabilities. However, the effect of algal cell interaction with AOM on the membrane fouling mechanism remains unclear. This study systematically investigated the filtration characteristics of algal cells and AOM, individually and in combination. The mechanism of membrane fouling was explored through the distribution of organic components, algal cake structure, interfacial free energy, and changes in the functional groups in cross-fouling. The mitigation effects of pretreatment additives, including diatomite, powdered activated carbon (PAC), and plant cotton, on interaction fouling were evaluated. The results revealed that the interaction between algal cells and AOM had a synergistic effect, significantly increasing membrane resistance. The presence of algal cells facilitated the transformation of some irreversible fouling into reversible fouling. Compared with cells, AOM exhibited higher adhesion-free energy with the membrane, with higher AOM concentrations notably elevating both Ri and Rir. Confocal laser scanning microscopy (CLSM), scanning electron microscope, and atomic force microscope (AFM) observations revealed that protein volume fractions increased with cake layer thickness during cross-fouling, while polysaccharides preferentially deposited on the membrane surface. Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analyses further indicated that polysaccharides are critical in membrane fouling, while proteins were more likely to cause reversible fouling within the cake layer. Notably, diatomite significantly reduced the interaction fouling coefficient by optimizing the cake layer structure. These findings provide valuable insights for controlling membrane fouling based on the characteristics of cells and AOM.
期刊介绍:
Separation and Purification Technology is a premier journal committed to sharing innovative methods for separation and purification in chemical and environmental engineering, encompassing both homogeneous solutions and heterogeneous mixtures. Our scope includes the separation and/or purification of liquids, vapors, and gases, as well as carbon capture and separation techniques. However, it's important to note that methods solely intended for analytical purposes are not within the scope of the journal. Additionally, disciplines such as soil science, polymer science, and metallurgy fall outside the purview of Separation and Purification Technology. Join us in advancing the field of separation and purification methods for sustainable solutions in chemical and environmental engineering.