{"title":"用于有机废水处理的基于碳质材料的可持续催化膜:进展与前景","authors":"Yongtao Xue, Jia Wei Chew","doi":"10.1016/j.seppur.2024.131119","DOIUrl":null,"url":null,"abstract":"Catalytic membrane, as a cutting-edge hybrid technology, is promising for organic wastewater treatment not only because of the excellent removal efficiency for various organic pollutants, but also because of the mitigation of membrane fouling. However, some challenges persist, including the relatively high fabrication costs of membranes, the high possibility of metal ions leaching from membrane structures, and the poor renewability of synthetic materials, which significantly restrict more widespread application. To address these issues, carbonaceous materials (e.g., biochar, activated carbon, carbon nanotubes, graphene, graphene oxide) are renewable and environmentally friendly materials that inherently have large surface areas, high porosity, and tuneable surface functional groups that can be employed as excellent alternatives in catalytic membranes. In this review, various methods (e.g., blending, in-situ growth, interfacial polymerization, and layer-by-layer assembly) for the fabrication of carbonaceous materials-based membranes are comprehensively summarized and discussed. Subsequently, the integration of catalytic membranes in different processes, whether individually (e.g., photocatalytic process, advanced oxidization process, and electrocatalytic process) or hybridized (e.g., photoelectrochemical process, photo-assisted advanced oxidization process), is assessed. In addition, various carbonaceous materials-based catalytic membranes implemented for the remediation of wastewater are critically discussed. Furthermore, the existing challenges are described, and further research recommendations are proposed. This review is expected to be beneficial for advancing the development of carbonaceous materials-based catalytic membranes for practical decontamination of organic wastewater.","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"23 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sustainable carbonaceous materials-based catalytic membranes for organic wastewater treatment: Progress and prospects\",\"authors\":\"Yongtao Xue, Jia Wei Chew\",\"doi\":\"10.1016/j.seppur.2024.131119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Catalytic membrane, as a cutting-edge hybrid technology, is promising for organic wastewater treatment not only because of the excellent removal efficiency for various organic pollutants, but also because of the mitigation of membrane fouling. However, some challenges persist, including the relatively high fabrication costs of membranes, the high possibility of metal ions leaching from membrane structures, and the poor renewability of synthetic materials, which significantly restrict more widespread application. To address these issues, carbonaceous materials (e.g., biochar, activated carbon, carbon nanotubes, graphene, graphene oxide) are renewable and environmentally friendly materials that inherently have large surface areas, high porosity, and tuneable surface functional groups that can be employed as excellent alternatives in catalytic membranes. In this review, various methods (e.g., blending, in-situ growth, interfacial polymerization, and layer-by-layer assembly) for the fabrication of carbonaceous materials-based membranes are comprehensively summarized and discussed. Subsequently, the integration of catalytic membranes in different processes, whether individually (e.g., photocatalytic process, advanced oxidization process, and electrocatalytic process) or hybridized (e.g., photoelectrochemical process, photo-assisted advanced oxidization process), is assessed. In addition, various carbonaceous materials-based catalytic membranes implemented for the remediation of wastewater are critically discussed. Furthermore, the existing challenges are described, and further research recommendations are proposed. This review is expected to be beneficial for advancing the development of carbonaceous materials-based catalytic membranes for practical decontamination of organic wastewater.\",\"PeriodicalId\":427,\"journal\":{\"name\":\"Separation and Purification Technology\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Separation and Purification Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.seppur.2024.131119\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.seppur.2024.131119","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Sustainable carbonaceous materials-based catalytic membranes for organic wastewater treatment: Progress and prospects
Catalytic membrane, as a cutting-edge hybrid technology, is promising for organic wastewater treatment not only because of the excellent removal efficiency for various organic pollutants, but also because of the mitigation of membrane fouling. However, some challenges persist, including the relatively high fabrication costs of membranes, the high possibility of metal ions leaching from membrane structures, and the poor renewability of synthetic materials, which significantly restrict more widespread application. To address these issues, carbonaceous materials (e.g., biochar, activated carbon, carbon nanotubes, graphene, graphene oxide) are renewable and environmentally friendly materials that inherently have large surface areas, high porosity, and tuneable surface functional groups that can be employed as excellent alternatives in catalytic membranes. In this review, various methods (e.g., blending, in-situ growth, interfacial polymerization, and layer-by-layer assembly) for the fabrication of carbonaceous materials-based membranes are comprehensively summarized and discussed. Subsequently, the integration of catalytic membranes in different processes, whether individually (e.g., photocatalytic process, advanced oxidization process, and electrocatalytic process) or hybridized (e.g., photoelectrochemical process, photo-assisted advanced oxidization process), is assessed. In addition, various carbonaceous materials-based catalytic membranes implemented for the remediation of wastewater are critically discussed. Furthermore, the existing challenges are described, and further research recommendations are proposed. This review is expected to be beneficial for advancing the development of carbonaceous materials-based catalytic membranes for practical decontamination of organic wastewater.
期刊介绍:
Separation and Purification Technology is a premier journal committed to sharing innovative methods for separation and purification in chemical and environmental engineering, encompassing both homogeneous solutions and heterogeneous mixtures. Our scope includes the separation and/or purification of liquids, vapors, and gases, as well as carbon capture and separation techniques. However, it's important to note that methods solely intended for analytical purposes are not within the scope of the journal. Additionally, disciplines such as soil science, polymer science, and metallurgy fall outside the purview of Separation and Purification Technology. Join us in advancing the field of separation and purification methods for sustainable solutions in chemical and environmental engineering.