Yichao Huang, Zhen Zeng, Tianyou Wang, Zhizhao Che
{"title":"氨对 PEM 燃料电池阴极催化剂层质子传输和离子膜结构的毒害机制","authors":"Yichao Huang, Zhen Zeng, Tianyou Wang, Zhizhao Che","doi":"10.1016/j.cej.2024.158543","DOIUrl":null,"url":null,"abstract":"Ammonia has strong poisoning effects on cathode catalyst layers of proton exchange membrane (PEM) fuel cells, but the poisoning mechanism is still unclear. In this study, all-atom molecular dynamics simulations are employed to investigate the poisoning mechanisms of ammonia. The results show that ammonium can replace the hydronium ions at the charged sites of sulfonic acid group of the ionomer side chain, and the adsorption of ammonium to sulfonic acid group can be attributed to van der Waals force and electrostatic interaction. Furthermore, other ammonia derivatives, amino and imino ions, can capture hydronium ions to form ion clusters. These ion clusters have strong capability to absorb hydronium ions, and their structures change with ammonia content and temperature. The main mechanism of formation of these clusters is due to the formation of relatively stable hydrogen bonds between ions within the clusters. These mechanisms significantly reduce the efficiency of proton transport, thereby decreasing the catalyst layer’s performance in electrochemical reactions. We also discover that the increase in temperature leads to the dissociation of large ion clusters, the blockage in the ionomer layer can be alleviated, and the proton transport efficiency can be restored. The understanding of the poisoning mechanisms obtained in this study is helpful for subsequent research aimed at resolving ammonia poisoning and enhancing the anti-poisoning performance of catalyst layers.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"29 1","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Poisoning mechanism of ammonia on proton transport and ionomer structure in cathode catalyst layer of PEM fuel cells\",\"authors\":\"Yichao Huang, Zhen Zeng, Tianyou Wang, Zhizhao Che\",\"doi\":\"10.1016/j.cej.2024.158543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ammonia has strong poisoning effects on cathode catalyst layers of proton exchange membrane (PEM) fuel cells, but the poisoning mechanism is still unclear. In this study, all-atom molecular dynamics simulations are employed to investigate the poisoning mechanisms of ammonia. The results show that ammonium can replace the hydronium ions at the charged sites of sulfonic acid group of the ionomer side chain, and the adsorption of ammonium to sulfonic acid group can be attributed to van der Waals force and electrostatic interaction. Furthermore, other ammonia derivatives, amino and imino ions, can capture hydronium ions to form ion clusters. These ion clusters have strong capability to absorb hydronium ions, and their structures change with ammonia content and temperature. The main mechanism of formation of these clusters is due to the formation of relatively stable hydrogen bonds between ions within the clusters. These mechanisms significantly reduce the efficiency of proton transport, thereby decreasing the catalyst layer’s performance in electrochemical reactions. We also discover that the increase in temperature leads to the dissociation of large ion clusters, the blockage in the ionomer layer can be alleviated, and the proton transport efficiency can be restored. The understanding of the poisoning mechanisms obtained in this study is helpful for subsequent research aimed at resolving ammonia poisoning and enhancing the anti-poisoning performance of catalyst layers.\",\"PeriodicalId\":270,\"journal\":{\"name\":\"Chemical Engineering Journal\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":13.3000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cej.2024.158543\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2024.158543","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Poisoning mechanism of ammonia on proton transport and ionomer structure in cathode catalyst layer of PEM fuel cells
Ammonia has strong poisoning effects on cathode catalyst layers of proton exchange membrane (PEM) fuel cells, but the poisoning mechanism is still unclear. In this study, all-atom molecular dynamics simulations are employed to investigate the poisoning mechanisms of ammonia. The results show that ammonium can replace the hydronium ions at the charged sites of sulfonic acid group of the ionomer side chain, and the adsorption of ammonium to sulfonic acid group can be attributed to van der Waals force and electrostatic interaction. Furthermore, other ammonia derivatives, amino and imino ions, can capture hydronium ions to form ion clusters. These ion clusters have strong capability to absorb hydronium ions, and their structures change with ammonia content and temperature. The main mechanism of formation of these clusters is due to the formation of relatively stable hydrogen bonds between ions within the clusters. These mechanisms significantly reduce the efficiency of proton transport, thereby decreasing the catalyst layer’s performance in electrochemical reactions. We also discover that the increase in temperature leads to the dissociation of large ion clusters, the blockage in the ionomer layer can be alleviated, and the proton transport efficiency can be restored. The understanding of the poisoning mechanisms obtained in this study is helpful for subsequent research aimed at resolving ammonia poisoning and enhancing the anti-poisoning performance of catalyst layers.
期刊介绍:
The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.