最冷褐矮星中的原太阳D-H丰度和十亿分之一PH3

Melanie J. Rowland, Caroline V. Morley, Brittany E. Miles, Genaro Suarez, Jacqueline K. Faherty, Andrew J. Skemer, Samuel A. Beiler, Michael R. Line, Gordon L. Bjoraker, Jonathan J. Fortney, Johanna M. Vos, Sherelyn Alejandro Merchan, Mark Marley, Ben Burningham, Richard Freedman, Ehsan Gharib-Nezhad, Natasha Batalha, Roxana Lupu, Channon Visscher, Adam C. Schneider, T. R. Geballe, Aarynn Carter, Katelyn Allers, James Mang, Dániel Apai, Mary Anne Limbach and Mikayla J. Wilson
{"title":"最冷褐矮星中的原太阳D-H丰度和十亿分之一PH3","authors":"Melanie J. Rowland, Caroline V. Morley, Brittany E. Miles, Genaro Suarez, Jacqueline K. Faherty, Andrew J. Skemer, Samuel A. Beiler, Michael R. Line, Gordon L. Bjoraker, Jonathan J. Fortney, Johanna M. Vos, Sherelyn Alejandro Merchan, Mark Marley, Ben Burningham, Richard Freedman, Ehsan Gharib-Nezhad, Natasha Batalha, Roxana Lupu, Channon Visscher, Adam C. Schneider, T. R. Geballe, Aarynn Carter, Katelyn Allers, James Mang, Dániel Apai, Mary Anne Limbach and Mikayla J. Wilson","doi":"10.3847/2041-8213/ad9744","DOIUrl":null,"url":null,"abstract":"The coldest Y spectral type brown dwarfs are similar in mass and temperature to cool and warm (∼200–400 K) giant exoplanets. We can therefore use their atmospheres as proxies for planetary atmospheres, testing our understanding of physics and chemistry for these complex, cool worlds. At these cold temperatures, their atmospheres are cold enough for water clouds to form, and chemical timescales increase, increasing the likelihood of disequilibrium chemistry compared to warmer classes of planets. JWST observations are revolutionizing the characterization of these worlds with high signal-to-noise, moderate-resolution near- and mid-infrared spectra. The spectra have been used to measure the abundances of prominent species, like water, methane, and ammonia; species that trace chemical reactions, like carbon monoxide; and even isotopologues of carbon monoxide and ammonia. Here, we present atmospheric retrieval results using both published fixed-slit (Guaranteed Time Observation program 1230) and new averaged time series observations (GO program 2327) of the coldest known Y dwarf, WISE 0855–0714 (using NIRSpec G395M spectra), which has an effective temperature of ∼264 K. We present a detection of deuterium in an atmosphere outside of the solar system via a relative measurement of deuterated methane (CH3D) and standard methane. From this, we infer the D/H ratio of a substellar object outside the solar system for the first time. We also present a well-constrained part-per-billion abundance of phosphine (PH3). We discuss our interpretation of these results and the implications for brown dwarf and giant exoplanet formation and evolution.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protosolar D-to-H Abundance and One Part per Billion PH3 in the Coldest Brown Dwarf\",\"authors\":\"Melanie J. Rowland, Caroline V. Morley, Brittany E. Miles, Genaro Suarez, Jacqueline K. Faherty, Andrew J. Skemer, Samuel A. Beiler, Michael R. Line, Gordon L. Bjoraker, Jonathan J. Fortney, Johanna M. Vos, Sherelyn Alejandro Merchan, Mark Marley, Ben Burningham, Richard Freedman, Ehsan Gharib-Nezhad, Natasha Batalha, Roxana Lupu, Channon Visscher, Adam C. Schneider, T. R. Geballe, Aarynn Carter, Katelyn Allers, James Mang, Dániel Apai, Mary Anne Limbach and Mikayla J. Wilson\",\"doi\":\"10.3847/2041-8213/ad9744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The coldest Y spectral type brown dwarfs are similar in mass and temperature to cool and warm (∼200–400 K) giant exoplanets. We can therefore use their atmospheres as proxies for planetary atmospheres, testing our understanding of physics and chemistry for these complex, cool worlds. At these cold temperatures, their atmospheres are cold enough for water clouds to form, and chemical timescales increase, increasing the likelihood of disequilibrium chemistry compared to warmer classes of planets. JWST observations are revolutionizing the characterization of these worlds with high signal-to-noise, moderate-resolution near- and mid-infrared spectra. The spectra have been used to measure the abundances of prominent species, like water, methane, and ammonia; species that trace chemical reactions, like carbon monoxide; and even isotopologues of carbon monoxide and ammonia. Here, we present atmospheric retrieval results using both published fixed-slit (Guaranteed Time Observation program 1230) and new averaged time series observations (GO program 2327) of the coldest known Y dwarf, WISE 0855–0714 (using NIRSpec G395M spectra), which has an effective temperature of ∼264 K. We present a detection of deuterium in an atmosphere outside of the solar system via a relative measurement of deuterated methane (CH3D) and standard methane. From this, we infer the D/H ratio of a substellar object outside the solar system for the first time. We also present a well-constrained part-per-billion abundance of phosphine (PH3). We discuss our interpretation of these results and the implications for brown dwarf and giant exoplanet formation and evolution.\",\"PeriodicalId\":501814,\"journal\":{\"name\":\"The Astrophysical Journal Letters\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astrophysical Journal Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/2041-8213/ad9744\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/ad9744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Protosolar D-to-H Abundance and One Part per Billion PH3 in the Coldest Brown Dwarf
The coldest Y spectral type brown dwarfs are similar in mass and temperature to cool and warm (∼200–400 K) giant exoplanets. We can therefore use their atmospheres as proxies for planetary atmospheres, testing our understanding of physics and chemistry for these complex, cool worlds. At these cold temperatures, their atmospheres are cold enough for water clouds to form, and chemical timescales increase, increasing the likelihood of disequilibrium chemistry compared to warmer classes of planets. JWST observations are revolutionizing the characterization of these worlds with high signal-to-noise, moderate-resolution near- and mid-infrared spectra. The spectra have been used to measure the abundances of prominent species, like water, methane, and ammonia; species that trace chemical reactions, like carbon monoxide; and even isotopologues of carbon monoxide and ammonia. Here, we present atmospheric retrieval results using both published fixed-slit (Guaranteed Time Observation program 1230) and new averaged time series observations (GO program 2327) of the coldest known Y dwarf, WISE 0855–0714 (using NIRSpec G395M spectra), which has an effective temperature of ∼264 K. We present a detection of deuterium in an atmosphere outside of the solar system via a relative measurement of deuterated methane (CH3D) and standard methane. From this, we infer the D/H ratio of a substellar object outside the solar system for the first time. We also present a well-constrained part-per-billion abundance of phosphine (PH3). We discuss our interpretation of these results and the implications for brown dwarf and giant exoplanet formation and evolution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信