实验测试对健康人体血液微生物群的证据提出了质疑。

Leandro Di Gloria, Simone Baldi, Lavinia Curini, Sara Bertorello, Giulia Nannini, Francesco Cei, Elena Niccolai, Matteo Ramazzotti, Amedeo Amedei
{"title":"实验测试对健康人体血液微生物群的证据提出了质疑。","authors":"Leandro Di Gloria, Simone Baldi, Lavinia Curini, Sara Bertorello, Giulia Nannini, Francesco Cei, Elena Niccolai, Matteo Ramazzotti, Amedeo Amedei","doi":"10.1111/febs.17362","DOIUrl":null,"url":null,"abstract":"<p><p>The advent of next-generation sequencing (NGS) technologies has made it possible to investigate microbial communities in various environments, including different sites within the human body. Therefore, the previously established belief of the sterile nature of several body sites, including human blood, has now been challenged. However, metagenomics investigation of areas with an anticipated low microbial biomass may be susceptible to misinterpretation. Here, we critically evaluate the results of 16S targeted amplicon sequencing performed on total DNA collected from healthy donors' blood samples while incorporating specific negative controls aimed at addressing potential bias to supplement and strengthen the research in this area. We prepared negative controls by increasing the initial DNA quantity through sequences that can be recognized and subsequently discarded. We found that only three organisms were sporadically present among the samples, and this was mostly attributable to bacteria ubiquitously present in laboratory reagents. Despite not fully confirming or denying the existence of healthy blood microbiota, our results suggest that living bacteria, or at least their residual DNA sequences, are not a common feature of human blood in healthy people. Finally, our study poses relevant questions on the design of controls in this research area that must be considered in order to avoid misinterpreted results that appear to contaminate current high-throughput research.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental tests challenge the evidence of a healthy human blood microbiome.\",\"authors\":\"Leandro Di Gloria, Simone Baldi, Lavinia Curini, Sara Bertorello, Giulia Nannini, Francesco Cei, Elena Niccolai, Matteo Ramazzotti, Amedeo Amedei\",\"doi\":\"10.1111/febs.17362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The advent of next-generation sequencing (NGS) technologies has made it possible to investigate microbial communities in various environments, including different sites within the human body. Therefore, the previously established belief of the sterile nature of several body sites, including human blood, has now been challenged. However, metagenomics investigation of areas with an anticipated low microbial biomass may be susceptible to misinterpretation. Here, we critically evaluate the results of 16S targeted amplicon sequencing performed on total DNA collected from healthy donors' blood samples while incorporating specific negative controls aimed at addressing potential bias to supplement and strengthen the research in this area. We prepared negative controls by increasing the initial DNA quantity through sequences that can be recognized and subsequently discarded. We found that only three organisms were sporadically present among the samples, and this was mostly attributable to bacteria ubiquitously present in laboratory reagents. Despite not fully confirming or denying the existence of healthy blood microbiota, our results suggest that living bacteria, or at least their residual DNA sequences, are not a common feature of human blood in healthy people. Finally, our study poses relevant questions on the design of controls in this research area that must be considered in order to avoid misinterpreted results that appear to contaminate current high-throughput research.</p>\",\"PeriodicalId\":94226,\"journal\":{\"name\":\"The FEBS journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The FEBS journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/febs.17362\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FEBS journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/febs.17362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental tests challenge the evidence of a healthy human blood microbiome.

The advent of next-generation sequencing (NGS) technologies has made it possible to investigate microbial communities in various environments, including different sites within the human body. Therefore, the previously established belief of the sterile nature of several body sites, including human blood, has now been challenged. However, metagenomics investigation of areas with an anticipated low microbial biomass may be susceptible to misinterpretation. Here, we critically evaluate the results of 16S targeted amplicon sequencing performed on total DNA collected from healthy donors' blood samples while incorporating specific negative controls aimed at addressing potential bias to supplement and strengthen the research in this area. We prepared negative controls by increasing the initial DNA quantity through sequences that can be recognized and subsequently discarded. We found that only three organisms were sporadically present among the samples, and this was mostly attributable to bacteria ubiquitously present in laboratory reagents. Despite not fully confirming or denying the existence of healthy blood microbiota, our results suggest that living bacteria, or at least their residual DNA sequences, are not a common feature of human blood in healthy people. Finally, our study poses relevant questions on the design of controls in this research area that must be considered in order to avoid misinterpreted results that appear to contaminate current high-throughput research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信