模拟漆酶的铜钴纳米酶用于食品和化妆品中大麻二酚的灵敏比色测定

IF 3.2 4区 化学 Q2 CHEMISTRY, ANALYTICAL
Luminescence Pub Date : 2024-12-17 DOI:10.1002/bio.70054
Le Wang, Qiulan Li, Dezhi Yang, Yaling Yang, Yanqin Zhu, Qinhong Yin
{"title":"模拟漆酶的铜钴纳米酶用于食品和化妆品中大麻二酚的灵敏比色测定","authors":"Le Wang,&nbsp;Qiulan Li,&nbsp;Dezhi Yang,&nbsp;Yaling Yang,&nbsp;Yanqin Zhu,&nbsp;Qinhong Yin","doi":"10.1002/bio.70054","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In colorimetric analysis, nanozymes are invaluable tools due to their simple production, long-lasting stability, and adaptable enzymatic activity, which enable them to induce changes in substrate color. In this study, a simple nanozyme-based colorimetric sensor was developed to detect cannabidiol (CBD) by using the laccase activity of the self-made MOF with copper and cobalt loading (Cu/Co@MOF) nanozyme, which was synthesized using a one-pot microwave method. The Cu/Co@MOF has the ability to catalyze the coupling reaction between 4-AP and various phenolic substrates, thereby converting colorless phenolic substrates into red substances. Notably, 16 ng/mL was the limit of detection. Based on Y = 0.137X + 0.003 equation, absorbance and CAN <b>concentrations</b> (0.067 to 10 μg/mL with a correlation value [<i>R</i><sup>2</sup>] of 0.993) had a significant correlation. The developed colorimetric method was subsequently employed to determine CBD in facial masks and essential oil samples, resulting in relative standard deviations (RSDs) ranging from 1.4% to 4.3%. Therefore, this sensitive, cost-effective, and rapid method ensures an effective determination of CBD in food and cosmetics.</p>\n </div>","PeriodicalId":49902,"journal":{"name":"Luminescence","volume":"39 12","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Copper–Cobalt Nanozyme Mimicking Laccase for Sensitive Colorimetric Determination of Cannabidiol in Food and Cosmetics\",\"authors\":\"Le Wang,&nbsp;Qiulan Li,&nbsp;Dezhi Yang,&nbsp;Yaling Yang,&nbsp;Yanqin Zhu,&nbsp;Qinhong Yin\",\"doi\":\"10.1002/bio.70054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In colorimetric analysis, nanozymes are invaluable tools due to their simple production, long-lasting stability, and adaptable enzymatic activity, which enable them to induce changes in substrate color. In this study, a simple nanozyme-based colorimetric sensor was developed to detect cannabidiol (CBD) by using the laccase activity of the self-made MOF with copper and cobalt loading (Cu/Co@MOF) nanozyme, which was synthesized using a one-pot microwave method. The Cu/Co@MOF has the ability to catalyze the coupling reaction between 4-AP and various phenolic substrates, thereby converting colorless phenolic substrates into red substances. Notably, 16 ng/mL was the limit of detection. Based on Y = 0.137X + 0.003 equation, absorbance and CAN <b>concentrations</b> (0.067 to 10 μg/mL with a correlation value [<i>R</i><sup>2</sup>] of 0.993) had a significant correlation. The developed colorimetric method was subsequently employed to determine CBD in facial masks and essential oil samples, resulting in relative standard deviations (RSDs) ranging from 1.4% to 4.3%. Therefore, this sensitive, cost-effective, and rapid method ensures an effective determination of CBD in food and cosmetics.</p>\\n </div>\",\"PeriodicalId\":49902,\"journal\":{\"name\":\"Luminescence\",\"volume\":\"39 12\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Luminescence\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bio.70054\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Luminescence","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bio.70054","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

在比色分析中,纳米酶因其简单的生产、持久的稳定性和适应性强的酶活性而成为宝贵的工具,这使它们能够诱导底物颜色的变化。本研究利用一锅微波法制备的负载铜和钴的自制MOF (Cu/Co@MOF)纳米酶的漆酶活性,开发了一种简单的基于纳米酶的比色传感器,用于检测大麻二酚(CBD)。Cu/Co@MOF能够催化4-AP与各种酚类底物的偶联反应,将无色的酚类底物转化为红色物质。值得注意的是,16 ng/mL为检测限。根据Y = 0.137X + 0.003方程,吸光度与CAN浓度(0.067 ~ 10 μg/mL,相关系数[R2]为0.993)具有显著相关性。随后,将所建立的比色法用于面膜和精油样品中CBD的测定,得到的相对标准偏差(rsd)为1.4% ~ 4.3%。因此,该方法灵敏、经济、快速,确保了食品和化妆品中CBD的有效测定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Copper–Cobalt Nanozyme Mimicking Laccase for Sensitive Colorimetric Determination of Cannabidiol in Food and Cosmetics

In colorimetric analysis, nanozymes are invaluable tools due to their simple production, long-lasting stability, and adaptable enzymatic activity, which enable them to induce changes in substrate color. In this study, a simple nanozyme-based colorimetric sensor was developed to detect cannabidiol (CBD) by using the laccase activity of the self-made MOF with copper and cobalt loading (Cu/Co@MOF) nanozyme, which was synthesized using a one-pot microwave method. The Cu/Co@MOF has the ability to catalyze the coupling reaction between 4-AP and various phenolic substrates, thereby converting colorless phenolic substrates into red substances. Notably, 16 ng/mL was the limit of detection. Based on Y = 0.137X + 0.003 equation, absorbance and CAN concentrations (0.067 to 10 μg/mL with a correlation value [R2] of 0.993) had a significant correlation. The developed colorimetric method was subsequently employed to determine CBD in facial masks and essential oil samples, resulting in relative standard deviations (RSDs) ranging from 1.4% to 4.3%. Therefore, this sensitive, cost-effective, and rapid method ensures an effective determination of CBD in food and cosmetics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Luminescence
Luminescence 生物-生化与分子生物学
CiteScore
5.10
自引率
13.80%
发文量
248
审稿时长
3.5 months
期刊介绍: Luminescence provides a forum for the publication of original scientific papers, short communications, technical notes and reviews on fundamental and applied aspects of all forms of luminescence, including bioluminescence, chemiluminescence, electrochemiluminescence, sonoluminescence, triboluminescence, fluorescence, time-resolved fluorescence and phosphorescence. Luminescence publishes papers on assays and analytical methods, instrumentation, mechanistic and synthetic studies, basic biology and chemistry. Luminescence also publishes details of forthcoming meetings, information on new products, and book reviews. A special feature of the Journal is surveys of the recent literature on selected topics in luminescence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信