人工智能在胸部放射学中的应用:人工智能在胸部放射学中的应用:叙述性综述(人工智能在胸部放射学中的应用)。

IF 2.5 Q2 RESPIRATORY SYSTEM
Woo Hyeon Lim, Hyungjin Kim
{"title":"人工智能在胸部放射学中的应用:人工智能在胸部放射学中的应用:叙述性综述(人工智能在胸部放射学中的应用)。","authors":"Woo Hyeon Lim, Hyungjin Kim","doi":"10.4046/trd.2024.0062","DOIUrl":null,"url":null,"abstract":"<p><p>Thoracic radiology is a primary field where artificial intelligence (AI) has been extensively researched. Recent advancements in AI demonstrate potential improvements in radiologists' performance. AI facilitates the detection and classification of abnormalities, as well as the quantification of both normal and abnormal anatomical structures. Furthermore, it enables prognostication based on these quantitative values. In this review article, the recent achievements of AI in thoracic radiology will be reviewed, mainly focused on deep learning, and the current limitations and future directions of this cutting-edge technique will be discussed.</p>","PeriodicalId":23368,"journal":{"name":"Tuberculosis and Respiratory Diseases","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of artificial intelligence in thoracic radiology: A narrative review (Application of AI in thoracic radiology).\",\"authors\":\"Woo Hyeon Lim, Hyungjin Kim\",\"doi\":\"10.4046/trd.2024.0062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Thoracic radiology is a primary field where artificial intelligence (AI) has been extensively researched. Recent advancements in AI demonstrate potential improvements in radiologists' performance. AI facilitates the detection and classification of abnormalities, as well as the quantification of both normal and abnormal anatomical structures. Furthermore, it enables prognostication based on these quantitative values. In this review article, the recent achievements of AI in thoracic radiology will be reviewed, mainly focused on deep learning, and the current limitations and future directions of this cutting-edge technique will be discussed.</p>\",\"PeriodicalId\":23368,\"journal\":{\"name\":\"Tuberculosis and Respiratory Diseases\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tuberculosis and Respiratory Diseases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4046/trd.2024.0062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RESPIRATORY SYSTEM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tuberculosis and Respiratory Diseases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4046/trd.2024.0062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0

摘要

胸部放射学是人工智能(AI)被广泛研究的主要领域。人工智能的最新进展表明,放射科医生的表现有可能得到改善。人工智能有助于异常的检测和分类,以及正常和异常解剖结构的量化。此外,它使基于这些定量值的预测成为可能。在这篇综述文章中,将回顾人工智能在胸部放射学领域的最新成就,主要集中在深度学习方面,并讨论这一前沿技术目前的局限性和未来的发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of artificial intelligence in thoracic radiology: A narrative review (Application of AI in thoracic radiology).

Thoracic radiology is a primary field where artificial intelligence (AI) has been extensively researched. Recent advancements in AI demonstrate potential improvements in radiologists' performance. AI facilitates the detection and classification of abnormalities, as well as the quantification of both normal and abnormal anatomical structures. Furthermore, it enables prognostication based on these quantitative values. In this review article, the recent achievements of AI in thoracic radiology will be reviewed, mainly focused on deep learning, and the current limitations and future directions of this cutting-edge technique will be discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
0.00%
发文量
42
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信