{"title":"从 Geniculata J-0 菌株中提取的挥发性有机化合物作为潜在的生物熏蒸剂,可防治兰州百合收获后由 Fusarium oxysporum 引起的鳞茎腐烂病。","authors":"Lijun Ling, Rui Yue, Yuanyuan Wang, Lijun Feng, Ling Yang, Yao Li, Rongxiu Mo, Wenyue Zhang, Fanjin Kong, Yijuan Jiang, Yongpeng Zhou","doi":"10.1007/s11274-024-04228-z","DOIUrl":null,"url":null,"abstract":"<p><p>The Lanzhou lily bulbs are often vulnerable to postharvest infections by pathogenic fungi, leading to lily bulb rot. This study investigated the ability of volatile organic compounds (VOCs) produced by Stenotrophomonas geniculata J-0 to control the highly pathogenic fungus Fusarium oxysporum BH-7 in postharvest Lanzhou lily bulbs. VOCs of S. geniculata J-0 showed inhibitory effect on the mycelial growth of F. oxysporum BH-7, with a maximum inhibition of 100%. Scanning electron microscope (SEM) observed that VOCs caused a shift in mycelial morphology from elongated and uniform tubular to collapsed and wrinkled. Moreover, VOCs of J-0 significantly reduced pathogenic fungal spore germination and sporulation. Through headspace gas chromatography-ion mobility spectrometry analysis, J-0 emitted 15 volatile compounds. The fumigation test of BH-7 with single pure synthetic compounds showed that 1-penten-3-one had excellent antifungal activity, with an inhibition rate of 100% at 4 μL/L. Additionally, our results revealed 1-penten-3-one destroyed the integrity and increased the permeability of BH-7 mycelial cell membranes, leading to leakage of intracellular electrolytes and substances, a reduction in extracellular pH, a blockage of ergosterol synthesis and an elevation in malondialdehyde content. In vivo experiments, fumigation of 1-penten-3-one at an exceptionally low concentration (4 μL/L) for a very short period of time (0.5 h) was effective in delaying the onset and prevalence of postharvest diseases. Hence, this study provides novel antifungal agents to control disease in postharvest Lanzhou lily and enhances our understanding of the biocontrol potential of volatiles from S. geniculata.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"41 1","pages":"9"},"PeriodicalIF":4.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Volatile organic compounds from Stenotrophomonas geniculata J-0 as potential biofumigants manage bulb rot caused by Fusarium oxysporum in postharvest Lanzhou lily.\",\"authors\":\"Lijun Ling, Rui Yue, Yuanyuan Wang, Lijun Feng, Ling Yang, Yao Li, Rongxiu Mo, Wenyue Zhang, Fanjin Kong, Yijuan Jiang, Yongpeng Zhou\",\"doi\":\"10.1007/s11274-024-04228-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Lanzhou lily bulbs are often vulnerable to postharvest infections by pathogenic fungi, leading to lily bulb rot. This study investigated the ability of volatile organic compounds (VOCs) produced by Stenotrophomonas geniculata J-0 to control the highly pathogenic fungus Fusarium oxysporum BH-7 in postharvest Lanzhou lily bulbs. VOCs of S. geniculata J-0 showed inhibitory effect on the mycelial growth of F. oxysporum BH-7, with a maximum inhibition of 100%. Scanning electron microscope (SEM) observed that VOCs caused a shift in mycelial morphology from elongated and uniform tubular to collapsed and wrinkled. Moreover, VOCs of J-0 significantly reduced pathogenic fungal spore germination and sporulation. Through headspace gas chromatography-ion mobility spectrometry analysis, J-0 emitted 15 volatile compounds. The fumigation test of BH-7 with single pure synthetic compounds showed that 1-penten-3-one had excellent antifungal activity, with an inhibition rate of 100% at 4 μL/L. Additionally, our results revealed 1-penten-3-one destroyed the integrity and increased the permeability of BH-7 mycelial cell membranes, leading to leakage of intracellular electrolytes and substances, a reduction in extracellular pH, a blockage of ergosterol synthesis and an elevation in malondialdehyde content. In vivo experiments, fumigation of 1-penten-3-one at an exceptionally low concentration (4 μL/L) for a very short period of time (0.5 h) was effective in delaying the onset and prevalence of postharvest diseases. Hence, this study provides novel antifungal agents to control disease in postharvest Lanzhou lily and enhances our understanding of the biocontrol potential of volatiles from S. geniculata.</p>\",\"PeriodicalId\":23703,\"journal\":{\"name\":\"World journal of microbiology & biotechnology\",\"volume\":\"41 1\",\"pages\":\"9\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World journal of microbiology & biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11274-024-04228-z\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of microbiology & biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11274-024-04228-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Volatile organic compounds from Stenotrophomonas geniculata J-0 as potential biofumigants manage bulb rot caused by Fusarium oxysporum in postharvest Lanzhou lily.
The Lanzhou lily bulbs are often vulnerable to postharvest infections by pathogenic fungi, leading to lily bulb rot. This study investigated the ability of volatile organic compounds (VOCs) produced by Stenotrophomonas geniculata J-0 to control the highly pathogenic fungus Fusarium oxysporum BH-7 in postharvest Lanzhou lily bulbs. VOCs of S. geniculata J-0 showed inhibitory effect on the mycelial growth of F. oxysporum BH-7, with a maximum inhibition of 100%. Scanning electron microscope (SEM) observed that VOCs caused a shift in mycelial morphology from elongated and uniform tubular to collapsed and wrinkled. Moreover, VOCs of J-0 significantly reduced pathogenic fungal spore germination and sporulation. Through headspace gas chromatography-ion mobility spectrometry analysis, J-0 emitted 15 volatile compounds. The fumigation test of BH-7 with single pure synthetic compounds showed that 1-penten-3-one had excellent antifungal activity, with an inhibition rate of 100% at 4 μL/L. Additionally, our results revealed 1-penten-3-one destroyed the integrity and increased the permeability of BH-7 mycelial cell membranes, leading to leakage of intracellular electrolytes and substances, a reduction in extracellular pH, a blockage of ergosterol synthesis and an elevation in malondialdehyde content. In vivo experiments, fumigation of 1-penten-3-one at an exceptionally low concentration (4 μL/L) for a very short period of time (0.5 h) was effective in delaying the onset and prevalence of postharvest diseases. Hence, this study provides novel antifungal agents to control disease in postharvest Lanzhou lily and enhances our understanding of the biocontrol potential of volatiles from S. geniculata.
期刊介绍:
World Journal of Microbiology and Biotechnology publishes research papers and review articles on all aspects of Microbiology and Microbial Biotechnology.
Since its foundation, the Journal has provided a forum for research work directed toward finding microbiological and biotechnological solutions to global problems. As many of these problems, including crop productivity, public health and waste management, have major impacts in the developing world, the Journal especially reports on advances for and from developing regions.
Some topics are not within the scope of the Journal. Please do not submit your manuscript if it falls into one of the following categories:
· Virology
· Simple isolation of microbes from local sources
· Simple descriptions of an environment or reports on a procedure
· Veterinary, agricultural and clinical topics in which the main focus is not on a microorganism
· Data reporting on host response to microbes
· Optimization of a procedure
· Description of the biological effects of not fully identified compounds or undefined extracts of natural origin
· Data on not fully purified enzymes or procedures in which they are applied
All articles published in the Journal are independently refereed.