Bosiljka Tadić, Alexander Shapoval, Mikhail Shnirman
{"title":"快速驱动临界砂堆自组织动力学特征。","authors":"Bosiljka Tadić, Alexander Shapoval, Mikhail Shnirman","doi":"10.1103/PhysRevE.110.054203","DOIUrl":null,"url":null,"abstract":"<p><p>We study two prototypical models of self-organized criticality, namely sandpile automata with deterministic (Bak-Tang-Wiesenfeld) and probabilistic (Manna model) dynamical rules, focusing on the nature of stress fluctuations induced by driving-adding grains during avalanche propagation, and dissipation through avalanches that hit the system boundary. Our analysis of stress evolution time series reveals robust cyclical trends modulated by collective fluctuations with dissipative avalanches. These modulated cycles attain higher harmonics, characterized by multifractal measures within a broad range of timescales. The features of the associated singularity spectra capture the differences in the dynamic rules behind the self-organized critical states at adiabatic driving and their pertinent response to the increased driving rate, which alters the process of stochasticity and causes a loss of avalanche scaling. In sequences of outflow current carried by dissipative avalanches, the first return distributions follow the q-Gaussian law in the adiabatic limit. They appear to follow different laws at an intermediate scale with an increased driving rate, describing different pathways to the gradual loss of cooperative behavior in these two models. The robust appearance of cyclical trends and their multifractal modulation thus represents another remarkable feature of self-organized dynamics beyond the scaling of avalanches. It can also help identify the prominence of self-organizational phenomenology in an empirical time series when underlying interactions and driving modes remain hidden.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"110 5-1","pages":"054203"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Signatures of self-organized dynamics in rapidly driven critical sandpiles.\",\"authors\":\"Bosiljka Tadić, Alexander Shapoval, Mikhail Shnirman\",\"doi\":\"10.1103/PhysRevE.110.054203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We study two prototypical models of self-organized criticality, namely sandpile automata with deterministic (Bak-Tang-Wiesenfeld) and probabilistic (Manna model) dynamical rules, focusing on the nature of stress fluctuations induced by driving-adding grains during avalanche propagation, and dissipation through avalanches that hit the system boundary. Our analysis of stress evolution time series reveals robust cyclical trends modulated by collective fluctuations with dissipative avalanches. These modulated cycles attain higher harmonics, characterized by multifractal measures within a broad range of timescales. The features of the associated singularity spectra capture the differences in the dynamic rules behind the self-organized critical states at adiabatic driving and their pertinent response to the increased driving rate, which alters the process of stochasticity and causes a loss of avalanche scaling. In sequences of outflow current carried by dissipative avalanches, the first return distributions follow the q-Gaussian law in the adiabatic limit. They appear to follow different laws at an intermediate scale with an increased driving rate, describing different pathways to the gradual loss of cooperative behavior in these two models. The robust appearance of cyclical trends and their multifractal modulation thus represents another remarkable feature of self-organized dynamics beyond the scaling of avalanches. It can also help identify the prominence of self-organizational phenomenology in an empirical time series when underlying interactions and driving modes remain hidden.</p>\",\"PeriodicalId\":20085,\"journal\":{\"name\":\"Physical review. E\",\"volume\":\"110 5-1\",\"pages\":\"054203\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review. E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevE.110.054203\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.054203","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Signatures of self-organized dynamics in rapidly driven critical sandpiles.
We study two prototypical models of self-organized criticality, namely sandpile automata with deterministic (Bak-Tang-Wiesenfeld) and probabilistic (Manna model) dynamical rules, focusing on the nature of stress fluctuations induced by driving-adding grains during avalanche propagation, and dissipation through avalanches that hit the system boundary. Our analysis of stress evolution time series reveals robust cyclical trends modulated by collective fluctuations with dissipative avalanches. These modulated cycles attain higher harmonics, characterized by multifractal measures within a broad range of timescales. The features of the associated singularity spectra capture the differences in the dynamic rules behind the self-organized critical states at adiabatic driving and their pertinent response to the increased driving rate, which alters the process of stochasticity and causes a loss of avalanche scaling. In sequences of outflow current carried by dissipative avalanches, the first return distributions follow the q-Gaussian law in the adiabatic limit. They appear to follow different laws at an intermediate scale with an increased driving rate, describing different pathways to the gradual loss of cooperative behavior in these two models. The robust appearance of cyclical trends and their multifractal modulation thus represents another remarkable feature of self-organized dynamics beyond the scaling of avalanches. It can also help identify the prominence of self-organizational phenomenology in an empirical time series when underlying interactions and driving modes remain hidden.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.