快速驱动临界砂堆自组织动力学特征。

IF 2.4 3区 物理与天体物理 Q1 Mathematics
Bosiljka Tadić, Alexander Shapoval, Mikhail Shnirman
{"title":"快速驱动临界砂堆自组织动力学特征。","authors":"Bosiljka Tadić, Alexander Shapoval, Mikhail Shnirman","doi":"10.1103/PhysRevE.110.054203","DOIUrl":null,"url":null,"abstract":"<p><p>We study two prototypical models of self-organized criticality, namely sandpile automata with deterministic (Bak-Tang-Wiesenfeld) and probabilistic (Manna model) dynamical rules, focusing on the nature of stress fluctuations induced by driving-adding grains during avalanche propagation, and dissipation through avalanches that hit the system boundary. Our analysis of stress evolution time series reveals robust cyclical trends modulated by collective fluctuations with dissipative avalanches. These modulated cycles attain higher harmonics, characterized by multifractal measures within a broad range of timescales. The features of the associated singularity spectra capture the differences in the dynamic rules behind the self-organized critical states at adiabatic driving and their pertinent response to the increased driving rate, which alters the process of stochasticity and causes a loss of avalanche scaling. In sequences of outflow current carried by dissipative avalanches, the first return distributions follow the q-Gaussian law in the adiabatic limit. They appear to follow different laws at an intermediate scale with an increased driving rate, describing different pathways to the gradual loss of cooperative behavior in these two models. The robust appearance of cyclical trends and their multifractal modulation thus represents another remarkable feature of self-organized dynamics beyond the scaling of avalanches. It can also help identify the prominence of self-organizational phenomenology in an empirical time series when underlying interactions and driving modes remain hidden.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"110 5-1","pages":"054203"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Signatures of self-organized dynamics in rapidly driven critical sandpiles.\",\"authors\":\"Bosiljka Tadić, Alexander Shapoval, Mikhail Shnirman\",\"doi\":\"10.1103/PhysRevE.110.054203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We study two prototypical models of self-organized criticality, namely sandpile automata with deterministic (Bak-Tang-Wiesenfeld) and probabilistic (Manna model) dynamical rules, focusing on the nature of stress fluctuations induced by driving-adding grains during avalanche propagation, and dissipation through avalanches that hit the system boundary. Our analysis of stress evolution time series reveals robust cyclical trends modulated by collective fluctuations with dissipative avalanches. These modulated cycles attain higher harmonics, characterized by multifractal measures within a broad range of timescales. The features of the associated singularity spectra capture the differences in the dynamic rules behind the self-organized critical states at adiabatic driving and their pertinent response to the increased driving rate, which alters the process of stochasticity and causes a loss of avalanche scaling. In sequences of outflow current carried by dissipative avalanches, the first return distributions follow the q-Gaussian law in the adiabatic limit. They appear to follow different laws at an intermediate scale with an increased driving rate, describing different pathways to the gradual loss of cooperative behavior in these two models. The robust appearance of cyclical trends and their multifractal modulation thus represents another remarkable feature of self-organized dynamics beyond the scaling of avalanches. It can also help identify the prominence of self-organizational phenomenology in an empirical time series when underlying interactions and driving modes remain hidden.</p>\",\"PeriodicalId\":20085,\"journal\":{\"name\":\"Physical review. E\",\"volume\":\"110 5-1\",\"pages\":\"054203\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review. E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevE.110.054203\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.054203","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了自组织临界性的两个原型模型,即具有确定性(Bak-Tang-Wiesenfeld)和概率性(Manna 模型)动力学规则的砂堆自动机,重点是雪崩传播过程中由驱动添加晶粒引起的应力波动的性质,以及通过撞击系统边界的雪崩进行的耗散。我们对应力演变时间序列的分析揭示了由集体波动与耗散雪崩调制的强周期趋势。这些被调制的周期达到了高次谐波,在广泛的时间尺度范围内具有多分形测量的特征。相关奇异谱的特征捕捉到了绝热驱动下自组织临界状态背后的动态规则差异,以及它们对驱动速率增加的相关响应,驱动速率的增加改变了随机性过程并导致雪崩缩放的损失。在耗散雪崩所携带的外流电流序列中,首次回流分布在绝热极限下遵循 q-Gaussian 规律。在驱动速率增加的中间尺度,它们似乎遵循不同的规律,描述了这两种模型中逐渐丧失合作行为的不同途径。因此,周期趋势的强劲出现及其多分形调制代表了自组织动力学在雪崩规模之外的另一个显著特点。当潜在的相互作用和驱动模式仍被隐藏时,它还有助于识别经验时间序列中突出的自组织现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Signatures of self-organized dynamics in rapidly driven critical sandpiles.

We study two prototypical models of self-organized criticality, namely sandpile automata with deterministic (Bak-Tang-Wiesenfeld) and probabilistic (Manna model) dynamical rules, focusing on the nature of stress fluctuations induced by driving-adding grains during avalanche propagation, and dissipation through avalanches that hit the system boundary. Our analysis of stress evolution time series reveals robust cyclical trends modulated by collective fluctuations with dissipative avalanches. These modulated cycles attain higher harmonics, characterized by multifractal measures within a broad range of timescales. The features of the associated singularity spectra capture the differences in the dynamic rules behind the self-organized critical states at adiabatic driving and their pertinent response to the increased driving rate, which alters the process of stochasticity and causes a loss of avalanche scaling. In sequences of outflow current carried by dissipative avalanches, the first return distributions follow the q-Gaussian law in the adiabatic limit. They appear to follow different laws at an intermediate scale with an increased driving rate, describing different pathways to the gradual loss of cooperative behavior in these two models. The robust appearance of cyclical trends and their multifractal modulation thus represents another remarkable feature of self-organized dynamics beyond the scaling of avalanches. It can also help identify the prominence of self-organizational phenomenology in an empirical time series when underlying interactions and driving modes remain hidden.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical review. E
Physical review. E 物理-物理:流体与等离子体
CiteScore
4.60
自引率
16.70%
发文量
0
审稿时长
3.3 months
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信