Liubov Gosteva, Malo Tarpin, Nicolás Wschebor, Léonie Canet
{"title":"多维burgers - kardar - paris - zhang方程的无粘不动点。","authors":"Liubov Gosteva, Malo Tarpin, Nicolás Wschebor, Léonie Canet","doi":"10.1103/PhysRevE.110.054118","DOIUrl":null,"url":null,"abstract":"<p><p>A new scaling regime characterized by a z=1 dynamical critical exponent has been reported in several numerical simulations of the one-dimensional Kardar-Parisi-Zhang and noisy Burgers equations. In these works, this scaling, differing from the well-known KPZ one z=3/2, was found to emerge in the tensionless limit for the interface and in the inviscid limit for the fluid. Based on functional renormalization group, the origin of this scaling has been elucidated. It was shown to be controlled by a yet unpredicted fixed point of the one-dimensional Burgers-KPZ equation, termed inviscid Burgers (IB) fixed point. The associated universal properties, including the scaling function, were calculated. All these findings were restricted to d=1, and it raises the intriguing question of the fate of this new IB fixed point in higher dimensions. In this work, we address this issue and analyze the multidimensional Burgers-KPZ equation using functional renormalization group. We show that the IB fixed point exists in all dimensions d≥0, and that it controls the large momentum behavior of the correlation functions in the inviscid limit. It turns out that it yields in all d the same super-universal value z=1 for the dynamical exponent.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"110 5-1","pages":"054118"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inviscid fixed point of the multidimensional Burgers-Kardar-Parisi-Zhang equation.\",\"authors\":\"Liubov Gosteva, Malo Tarpin, Nicolás Wschebor, Léonie Canet\",\"doi\":\"10.1103/PhysRevE.110.054118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A new scaling regime characterized by a z=1 dynamical critical exponent has been reported in several numerical simulations of the one-dimensional Kardar-Parisi-Zhang and noisy Burgers equations. In these works, this scaling, differing from the well-known KPZ one z=3/2, was found to emerge in the tensionless limit for the interface and in the inviscid limit for the fluid. Based on functional renormalization group, the origin of this scaling has been elucidated. It was shown to be controlled by a yet unpredicted fixed point of the one-dimensional Burgers-KPZ equation, termed inviscid Burgers (IB) fixed point. The associated universal properties, including the scaling function, were calculated. All these findings were restricted to d=1, and it raises the intriguing question of the fate of this new IB fixed point in higher dimensions. In this work, we address this issue and analyze the multidimensional Burgers-KPZ equation using functional renormalization group. We show that the IB fixed point exists in all dimensions d≥0, and that it controls the large momentum behavior of the correlation functions in the inviscid limit. It turns out that it yields in all d the same super-universal value z=1 for the dynamical exponent.</p>\",\"PeriodicalId\":20085,\"journal\":{\"name\":\"Physical review. E\",\"volume\":\"110 5-1\",\"pages\":\"054118\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review. E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevE.110.054118\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.054118","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Inviscid fixed point of the multidimensional Burgers-Kardar-Parisi-Zhang equation.
A new scaling regime characterized by a z=1 dynamical critical exponent has been reported in several numerical simulations of the one-dimensional Kardar-Parisi-Zhang and noisy Burgers equations. In these works, this scaling, differing from the well-known KPZ one z=3/2, was found to emerge in the tensionless limit for the interface and in the inviscid limit for the fluid. Based on functional renormalization group, the origin of this scaling has been elucidated. It was shown to be controlled by a yet unpredicted fixed point of the one-dimensional Burgers-KPZ equation, termed inviscid Burgers (IB) fixed point. The associated universal properties, including the scaling function, were calculated. All these findings were restricted to d=1, and it raises the intriguing question of the fate of this new IB fixed point in higher dimensions. In this work, we address this issue and analyze the multidimensional Burgers-KPZ equation using functional renormalization group. We show that the IB fixed point exists in all dimensions d≥0, and that it controls the large momentum behavior of the correlation functions in the inviscid limit. It turns out that it yields in all d the same super-universal value z=1 for the dynamical exponent.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.